Skip to content

General Interest











  • Jones, I. S. F., Young, H. E. (1997). Engineering a large sustainable world fishery. Environmental Conservation 24, 99-104.


Unintended Consequences of Ocean Fertilization

Ocean Iron Fertilization Experiments

Boyd, P.W., D.C.E. Bakker, and C. Chandler. 2012. A new database to explore the findings from large-scale ocean iron enrichment experiments. Oceanography 25(4):64–71

Equatorial Pacific

IronEx I


North Pacific

Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study (SEEDS I)

The Second Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study (SEEDS II)


Southern Ocean

Southern Ocean Iron Release Experiment (SOIREE)


Southern Ocean Iron Experiment (SOFeX)

Kerguelan Ocean and Plateau compared Study (KEOPS)



Cycling of Phosphorus in the Eastern Mediterranean (CYCLOPS)

Thingstad, T. F. et al. (2005). Nature of phosphorus limitation in the ultra-oligotrophic eastern MediterraneanScience 309, 1068-1071.

Synthesis Papers

Regional Interest

Southern Ocean

Also see Ocean Iron Fertilization Experiments (SOIREE, SOFeX, EisenEx, KEOPS)

North Pacific

Also see Ocean Iron Fertilization Experiments (SEEDS I AND II, SERIES)

Equatorial Pacific

Also see Ocean Iron Fertilization Experiments (IronEx I and II)


Iron Biogeochemistry, Availability, and Analysis

Iron Biogeochemistry

Iron Availability

Iron Analysis

Impact on Phytoplankton

  • Banse, K. (1991). Rates of phytoplankton cell division in the field and in iron enrichment experimentsLimnol. Oceanogr. 36,1886-1898.
  • Barber, R. T., Chavez, F. P. (1991). Regulation of primary productivity rate in the equatorial PacificLimnol. Oceanogr. 36,1803-1815.
  • Brand, L. E. (1991). Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new productionLimnol. Oceanogr. 36,1756-1771.
  • Buma, A. G. J. et al. (1991). Metal enrichment experiments in the Weddell-Scotia Seas: Effects of iron and manganese on various plankton communitiesLimnol. Oceanogr. 36,1865-1878.
  • Coale, K. H. et al. (2003). Phytoplankton growth and biological response to iron and zinc addition in the Ross Sea and Antarctic Circumpolar Current along 170°W. Deep-Sea Res. II 50, 635-653.
  • Chavez, F. P. et al. (1991). Growth rates, grazing, sinking, and iron limitation of equatorial Pacific phytoplanktonLimnol. Oceanogr. 36,1816-1833.
  • Green, R. M., Geider, R. J., Falkowski, P. G. (1991). Effect of iron limitation on photosynthesis in a marine diatomLimnol. Oceanogr. 36,1772-1782.
  • Helbling, E. W., Villafañe, V., Holm-Hansen, O. (1991). Effect of iron on productivity and size distribution of Antarctic phytoplanktonLimnol. Oceanogr. 36,1879-1885.
  • Jones, I. S. F. (2002). Primary Production in the Sulu Sea.  Proceedings of Indian Academy of Sciences(Earth & Planetary Sciences) 111, 209-213.
  • LaRoche, J., Breitbarth, E. (2005). Importance of the diazotrophs as a source of new nitrogen in the ocean. J. Sea Res. 53, 67-91.
  • Lenes, J. M. et al. (2001). Iron fertilization and the Trichodesmium response on the West Florida shelf. Limnol. Oceanogr. 46, 1261-1277.
  • Putland, J. N., Whitney, F. A., Crawford, D. W. (2004). Survey of bottom-up controls of Emiliania huxleyi in the Northeast Subarctic Pacific. Deep-Sea Res. I 51, 1793-1802.
  • Sarthou, G. et al. (2005). Growth physiology and fate of diatoms in the ocean: A review. J. Sea Res. 53, 25-42.
  • Schoemann, V. et al. (1998). Effects of phytoplankton blooms on the cycling of manganese and iron in coastal waters. Limnol. Oceanogr. 43, 1427-1441.
  • Schoemann, V. et al. (2005). Phaeocystis blooms in the global ocean and their controlling mechanisms: A review. J. Sea Res. 53, 43-66.
  • Smetacek, V., Assmy, P., Henjes, J. (2004). The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarctic Sci. 16, 541-558.
  • Timmermans, K. R. et al. (2005). Physiological responses of three species of marine pico-phytoplankton to ammonium, phosphate, iron and light limitation. J. Sea Res. 53, 109-120.
  • Timmermans, K. R. et al. (2001). Growth rates of large and small Southern Ocean diatoms in relation to availability of iron in natural seawater. Limnol. Oceanogr. 46, 260-266.
  • Timmermans, K. R., van der Wagt, B., de Baar, H. J. W. (2004). Growth rates, half-saturation constants, and silicate, nitrate, and phosphate depletion in relation to iron availability of four large, open-ocean diatoms from the Southern Ocean. Limnol. Oceanogr. 49, 2141-2151.
  • Trick, C. G. et al. (2010). Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areasProc. Nat. Acad. Sci. 
  • Veldhuis, M. J. W. et al. (2005). Picophytoplankton; a comparative study of their biochemical composition and photosynthetic properties. J. Sea Res. 53, 7-24.
  • Visser, F. et al. (2003). The role of the reactivity and content of iron of aerosol dust on growth rates of two Antarctic diatom species. J. Phycol. 39, 1085-1094.

Modeling Studies

  • Arrigo, K. R., Tagliabue, A. (2005). Iron in the Ross Sea: 2. Impact of discrete iron addition strategies. J. Geophys. Res. 110, doi:10.1029/2004JC002568.
  • Bopp, L., Kohfeld, K. E., Le Quéré, C. (2003). Dust impact on marine biota and atmospheric CO2 during glacial periods. Paleoceanography 18, doi:10.1029/2002PA000810.
  • Chai, F. et al. (2007). Modeling responses of diatom productivity and biogenic silica export to iron enrichment in the equatorial Pacific Ocean. Glob. Biogeochem. Cycles 21, doi:10.1029/2006GB002804.
  • Dutkiewicz, S., Follows, M., Parekh, P. (2005). Interactions of the iron and phosphorus cycles: A three-dimensional model study. Glob. Biogeochem. Cycles 19, doi:10.1029/2004GB002342.
  • Edwards, A. M., Platt, T., Sathyendranath, S. (2004). The high-nutrient, low-chlorophyll regime of the ocean: limits on biomass and nitrate before and after iron enrichment. Ecological Modeling 171, 103-125.
  • Fujii, M. et al. (2005). Simulated biogeochemical responses to iron enrichments in three high nutrient, low chlorophyll (HNLC) regions. Prog. Oceanogr. 64, 307-324.
  • Fujii, M., Chai, F. (2009). Influences of initial plankton biomass and mixed-layer depths on the outcome of iron-fertilization experimentsDeep-Sea Res. II 56, doi:10.1016/j.dsr2.2009.07.007.
  • Gao, Y., Fan, S.-M., Sarmiento, J. L. (2003). Aeolian iron input to the ocean through precipitation scavenging: A modeling perspective and its implication for natural iron fertilization in the ocean. J. Geophys. Res. 108, doi:10.1029/2002JD002420.
  • Gnanadesikan, A., Sarmiento, J. L., Slater, R. D. (2003). Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production. Glob. Biogeochem. Cycles 17, doi:10.1029/2002GB001940.
  • Gnanadesikan, A., Marinov, I. (2008). Export is not enough: nutrient cycling and carbon sequestrationMar. Ecol. Prog. Ser. 364: 289-294.
  • Ito, T. et al. (2005). The Antarctic Circumpolar Productivity Belt. Geophys. Res. Lett. 32, doi:10.1029/2005GL023021.
  • Law, C. S. (2008). Predicting and monitoring the effects of large-scale ocean iron fertilization on marine trace gas emissionsMar. Ecol. Prog. Ser. 364: 283-288.
  • Le Clainche, Y. et al. (2006). Modeling analysis of the effect of iron enrichment on DMS dynamics in the NE Pacific (SERIES experiment)J. Geophys. Res. 111, doi:10.1029/2005JC002947.
  • Oschlies, A. (2009). Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptakeBiogeosciences 6, 1603-1613.
  • Oschlies, A. et al. (2010). Climate engineering by artificial ocean upwelling: Channelling the sorcerer's apprentice. Geophys. Res. Lett. 37, L04701.
  • Parekh, P., Follows, M. J., Boyle, E. (2004). Modeling the global ocean iron cycle. Glob. Biogeochem. Cycles 18, doi:10.1029/2003GB002061.
  • Parekh, P., Follows, M. J., Boyle, E. A. (2005). Decoupling of iron and phosphate in the global ocean. Glob. Biogeochem. Cycles 19, doi:10.1029/2004GB002280.
  • Pasquer, B. et al. (2005). Linking ocean biogeochemical cycles and ecosystem structure and function: results of the complex SWAMCO-4 model. J. Sea Res. 53, 93-108.
  • Platt, T. et al. (2003). Nitrate supply and demand in the mixed layer of the ocean. Mar. Ecol. Prog. Ser. 254, 3-9.
  • Sarmiento, J. L., Orr, J. C. (1991). Three-dimensional simulations of the impact of Southern Ocean nutrient depletion on atmospheric CO2 and ocean chemistryLimnol. Oceanogr. 36,1928-1950.
  • Sarmiento, J. L., Dunne, J., Armstrong, R. A. (2004). Do we now understand the ocean’s biological pump? U.S. JGOFS News 12, 1-5.
  • Sarmiento, J. L. et al. (2004). High-latitude controls of thermocline nutrients and low latitude biological productivityNature 427, 56-60.
  • Schlitzer, R. (2002). Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimatesDeep-Sea Research II 49, 1623-1644.
  • Tagliabue, A., Arrigo, K. R. (2005). Iron in the Ross Sea: 1. Impact on CO2 fluxes via variation in phytoplankton functional group and non-Redfield stoichiometry. J. Geophys. Res. 110, doi:10.1029/2004JC002531.
  • Iron Resources and Oceanic Nutrients - Advancement of Global Environmental Simulations.  Special Volume: Journal of Sea Research 53, Issues 1-2, pp. 1-120 (2005) (Editor: Veldhuis, M.J.W.).
  • Yoshie, N., Fujii, M., Yamanaka, Y. (2005). Ecosystem changes after the SEEDS iron fertilization in the western North Pacific simulated by a one-dimensional ecosystem model. Prog. Oceanogr. 64, 283-306.
  • Xiu, P., Chai, F. (2010). Modeling the effects of size on patch dynamics of an inert tracer. Ocean Sci. 6, 1-9.
  • Zeebe, R. E., Archer, D. (2005). Feasibility of ocean fertilization and its impact on future atmospheric CO2levels. Geophys. Res. Lett. 32, doi:10.1029/2005GL022449.



Glacial Ocean


Atmospheric dust, sea ice, and snow

Non-HNLC regions

Iron and Silica

  • Brzezinski, M. A. et al. (2001). Silicon dynamics within an intense open-ocean diatom bloom in the Pacific sector of the Southern OceanDeep-Sea Res. II 48, 3997-4018.
  • Brzezinski, M. A., Jones, J. L., Demarest, M. S. (2005). Control of silica production by iron and silicic acid during the Southern Ocean Iron Experiment (SOFeX). Limnol. Oceanogr. 50, 810-824.
  • Hutchins, D. A., Bruland, K. W. (1998). Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393, 561-564.
  • Takeda, S. (1998). Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393, 774-777.

Primary Production and Carbon Export

Aksnes, D. and Wassmann, P. (1993) Modeling the significance of zooplankton grazing for export production. Limnol. Oceanogr., 38, 978–985

Buesseler, K. and Boyd, P. (2009) Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr., 54, 1210–1232

Cavan, E. et al. (2017) Role of zooplankton in determining the efficiency of the biological carbon pump. Biogeosciences 14. 177-186.

Cavan. E. et al. (2015) Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pelletsGeophys. Res. Lett., 42, 821–830,

Henson, S. et al. (2015) Variability in efficiency of particulate organic carbon export: A model study. Global Biogeochem. Cycles, 29, 33–45

Hilting, A. et al. (2008) Variations in the oceanic vertical carbon isotope gradient and their implications for the Paleocene-Eocene biological pump. Paleoceanography, 23, PA3222

Kwon, E. et al. (2009) The impact of remineralization depth on the air-sea carbon balanceNat. Geosci., 2, 630–635

Lampitt, R. et al. (1990) What happens to zooplankton faecal pellets? Implications for vertical fluxMar. Biol., 23, 15–23

Laws, E. et al. (2000) Temperature effects on export production in the open ocean. Global Biogeochem. Cycles., 14, 1231–1246

Le Moigne, F. et al. (2016) What causes the inverse relationship between primary production and export efficiency in the Southern Ocean?Geophys. Res. Lett., 43, 4457–4466

Maiti, K. et al. (2013) An inverse relationship between production and export efficiency in the Southern Ocean. Geophys. Res. Lett., 40, 1557–1561

Martin, J. et al. (1987) VERTEX: carbon cycling in the north east Pacific. Deep-Sea Res., 34, 267–285

Winckler, G. et al. (2016) Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 yearsPNAS, 113, 6119–6124

Urea Fertilization

  • Glibert, P. M. et al. (2008). Ocean urea fertilization for carbon credits poses high ecological risksMarine Pollution Bull. 56, 1049-1056, doi: 10.1016/j.marpolbul.2008.03.010.
  • Glibert, P. M. et al. (2006). Escalating worldwide use of urea – a global change contributing to coastal eutrophication. Biogeochemistry 77, 441-463.
  • Leong, S. C. Y. et al. (2004). Variability in toxicity of the dinoflagellate Alexandrium tamarense in response to different nitrogen sources and concentrations. Toxicon 43, 407-415.
  • Mayo-Ramsay, J P (2010). Environmental, legal and social implications of ocean urea fertilisation: Sulu Sea example. Marine Policy 34-5, 831-835.
  • Shimizu Y., Watanabe, N.,Wrensford, G. (1993). Biosynthesis of brevetoxins and heterotrophic metabolism in Gymnodinium breve. In P. Lassus, G. Arzul, E. Erard-Le-Denn, P. Gentien, C. Marcaillou, Harmful Marine Algal Blooms. pp. 351-357. Lavoisier Publishing, Paris.

Artificial Upwelling