Anomalous >2000 year old surface ocean ¹⁴C: evidence for enhanced bicarbonate flux via Anaerobic Oxidation of Methane ? Patrick A. Rafter^a, J.D. Carriquiry^b, J-C Herguera^c, M.P. Hain^d, E.A. Solomon^e, and J.R. Southon^a

^oUC Irvine; ^bUABC; ^cCICESE; ^dUCSC; ^eUW prafter@uci.edu

Gulf of California circulation¹ allows us to reconstruct both the inflowing and outflowing seawater geochemistry using benthic vs. planktic foram ¹⁴C. Because of this circulation, the addition of geologic carbon predicts an older surface/planktic vs. benthic/deep ¹⁴C age.

The small difference between benthic & planktic foram Δ^{14} C for Gulf of California (upper) vs. the open Pacific² (lower) is consistent with the addition of ¹⁴C-free geologic carbon to inflowing / deep waters, advected out

in Gulf surface waters.

This ¹⁴C-free geologic carbon could not have been injected as CO, because it would have lowered seawater pH enough to dissolve the carbonate microfossils. Instead,

we suggest the introduction of geologic carbon in the form of partially neutralized,¹⁴C-free bicarbonate.

This could occur via pyrolysis of sediment organic matter to methane⁵ (driven by volcanic intrusions) & the anaerobic oxidation of this methane to HCO_3^{-1} (ref 6).

OFF-AXIS PYROLYSIS	ON-AXIS
& ANAEROBIC	HYDROTHERMAL
OXIDATION OF	AND/OR MANTLE
METHANE SOURCE	CARBON SOURCE

Can we observe these processe today? Can we further constrain the carbon source(s) in the past?

30 25 15 20 10 calendar age [kyr BP]

The benthic vs. planktic ¹⁴C age from 30 to 10-kyr shows REVERSALS (brown) both before and especially during the period of rising pCO_2 (green³). Assuming modern overturning, we can estimate the ¹⁴C-free C fluxes (blue).

(Samples where bioturbation is minimal⁴ or works to attenuate reversals shown as symbols.)

References: 1 Lavin & Marinone (2003); 2 Marchitto et al. (2007) & Lindsay et al. (2015); 3 Petit et al. (1999); 4 Keigwin (2002); 5 Einsele et al. (1980); 6 Davis & Yarbrough (1966)