
We lack either autonomous or remote 
sensing approaches to consistently estimate 
variation in DIP.
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Global Distribution DIPsat Fit to DIP Observations

Neural Network with Satellite Predictors
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qWe predict 73% of the variation in surface ocean 
phosphate concentration using remote sensing inputs 
to a neural network model.

q The response of predicted phosphate to remote 
sensing inputs matches our mechanistic understanding 
of phosphate sources and sinks.

q Sea surface salinity and dust deposition improve 
accuracy of low phosphate levels among subtropical 
gyres.

q The influence of ice melt and land induced circulation 
changes may not be well captured in this model.
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Surface Phosphate (DIP) Variation
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Including database of high sensitivity DIP measurements 
improves prediction at lowest concentrations.

GLODAP2 PO4 observations. 
High = red, Low = blue.

Dissolved inorganic phosphate (DIP) is one of the major 
bio-limiting nutrients.

We test which combination of satellite inputs leads to the best prediction 
of surface [DIP].

Artificial neural network models describe complex nonlinear response 
and interactions between remote sensing observations and [DIP].

SST alone covered 55% of global variation, but networks with NPP, SSS, and 
Dust Deposition captured gyre and equatorial upwelling regional gradients.

Conclusions

1st Axis, Latudinal
Physical ocean properties
• SST ,PAR, SSS 
2nd Axis, Tropical upwelling
Particle optical properties
• Rrs, bb, a, chlor-a, poc, pic
Plankton size fraction
• Nano-, pico-, micro-plankton
3rd Axis, Subtropical gyres
Iron stress
• Fe stress , AOT , dust deposition
4th Axis, Polar Oceans
Upwelling indicators
• wind stress, taux, tauy, curl,sla

Approach: 
Mechanistically 
link axes of 
variation to 
satellite inputs


