Physical Controls on Dissolved Oxygen and Inorganic Carbon Dynamics in Estuaries: Insights from Simplified Numerical Models

Malcolm Scully Woods Hole Oceanographic Institution mscully@whoi.edu

> OCB Summer Workshop June 24-27, 2019

Motivation:

- 1) Hypoxia in estuaries is a growing issues of major economic importance.
- 2) Estuaries are thought to be globally important sources of CO₂, but large uncertainties remain in these estimates.

Goal:

Use idealized numerical models to provide insight into how estuarine physics modulates low dissolved oxygen (hypoxia) and impacts oxygen and carbon fluxes.

- a) Part 1 Simulations of oxygen dynamics in Chesapeake Bay
- b) Part 2 -- Simulations of coupled O_2 /DIC in estuary with idealized bathymetry.

Conclusions: Physics are important

Simplified Dissolved Oxygen Modeling in Chesapeake Bay

- Oxygen is introduced as an additional model tracer.
- Oxygen consumption (respiration) is constant in time and space (~0.4gO₂/m³/day).
- No oxygen consumption outside of estuarine portion of model
- No oxygen production.
- At both surface and open boundaries, O₂ concentration is set to saturation.
- No negative oxygen concentration and no supersaturation.

Model assumes biology is constant so that the role of physical processes can be isolated!

What Physical Variables Contribute to Seasonal Cycle of Hypoxia?

Scully JGR-2013

Scully L&O-2016

Importance of Wind Forcing

Along Bay Bottom Dissolved Oxygen Variations

In estuaries, DIC and alkalinity are often strongly related to salinity. Stratified estuaries will have strong vertical gradients in DIC/alkalinity and vertical mixing will result in non-linear response of carbonate chemistry.

ALKALINITY (meq.liter-1)

2006

1500

2000

2000

1044

OIC (µM)

Jul 9

Jun 9

Nov

Sep 96

Mar 97

Jul 97

Dec 97

Nov

Apr 9

Sep 9

SALINITY (0/00)

Model for Coupled Oxygen-DIC Dynamics

- 1) Gross Primary Production based on simple P-I curve (produces/consume O₂ and DIC). No nutrients, phytoplankton, zooplankton, etc....
- 2) Community Respiration is constant in time and space and selected to give a prescribed Net Ecosystem Metabolism (NEM).
- 3 DIC, alkalinity at river and oceanic boundaries is prescribed (constant in time). Riverine water is super-saturated with pCO₂.
- 4) Alkalinity is conservative (no sources/sinks).
- 5) Carbonate chemistry equilibrium Millero (1995).
- 6) Air sea flux is calculated using estuarine piston formulation of Raymond et al (2000).
- 7) Systematically vary: 1) Tides, 2) River Discharge, 3) Wind, 4) GPP and CR (holding NEM constant)

Example Model Run:

Example Model (cont)

Simulation = Tidal Amplitude = 0.3m; River Discharge = 200 m³/s; Wind = 4 m/s (rotating);NEM = Heterotrophic

- Even though NEM is spatially uniform, there is significant alongestuary variability in gas flux. This variability must be balanced by convergence/divergence in advective transport.
- 2) Stratification prevents vertical mixing allowing buildup of high pCO₂ in bottom waters, which is advected up estuary and outgassed where stratification is weaker.
- 3) In lower estuary, O_2 flux is outward but CO_2 is ~ 0, where high pH/Alkalinity ensure that $\Delta DIC >>$ ΔCO_2 .

Combined Effect of Tides and River Discharge

Simulations = Systematically vary tidal amplitude and river discharge, while holding wind (4 m/s) and NEM (heterotrophic) constant

Effect of Winds

- 1) Consistent with tidal mixing, wind mixing tends to reduce magnitude air-sea outgassing/ingassing of CO_2/O_2 .
- 2) The impact of wind mixing on surface concentration is greater than increase in piston velocity.
- 3) Magnitude of CO₂ flux is consistently smaller than O₂ flux, and difference increases with intensity of mixing, consistent with greater conversion of CO₂ to HCO₃⁻ and CO₃²⁻.
- 4) Largest differences between O_2 and CO_2 fluxes in high salinity/alkalinity region of estuary.

Effect of Biological Rates (GPP and CR)

Tidal Amplitude = 0.5m, River Discharge = 200 m³/s; Wind = 4m/s Value of NEM is <u>Heterotrophic and held constant</u>, but GPP and CR are varied

Effect of GPP/CR (cont)

<u>CO₂ Flux:</u> For low GPP/CR 70% of NEM is outgassed and 30% is advectively exported to ocean. However, as GPP/CR increases, export at mouth decreases and more HCO₃ is converted to CO₂ (presumably in hypoxic bottom waters) and as a result, 130% of NEM is outgassed (mostly in upper estuary). <u>O₂ Flux:</u> For low GPP/CR 90% of O₂ demand is from atmospheric influx. As GPP/CR increase more O₂ is exported ocean at the mouth and atmospheric influx exceeds NEM. However, variation in flux are smaller for O₂.

Conclusions:

- 1) A model with no biological variability can reasonably simulate bottom oxygen in Chesapeake Bay at a variety time scales.
- 2) The physical variable that contributes most of this variability is wind (though not through direct vertical mixing, but rather localized mixing and advection).
- 3) The intensity of vertical mixing plays a key roll in controlling both O_2 and DIC fluxes in estuaries. Increased tidal mixing, river discharge and wind forcing all increase the importance of advective over atmospheric exchange of CO_2 and O_2 , but the partitioning of CO_2 flux responds more strongly because of underlying carbonate chemistry.
- 4) The simulated integrated air-sea fluxes are relatively insensitive to the gas transfer (piston) velocity, despite large differences in their wind-speed dependence.
- 5) Higher GPP/CR (for constant NEM) favors greater atmospheric exchange. This exchange occurs primarily in the upper estuary, where the estuarine residual circulation transports low DO/high pCO₂ bottom waters up-estuary into regions of weaker stratification where atmospheric exchange occurs.

Mixing Drives Residual Estuarine Circulation

Mixing also supplies O₂ to bottom waters, controls where O₂ and pCO₂ can exchange with atmosphere, supplies nutrients to photic zone, etc.... Estuarine circulation imports/exports O₂, DIC, DOC, nutrients, etc...

Importance of Gas Transfer Velocity (cont) Wannikhof et al (1992) Raymond et al (2000) 2 2 0 0 -31.22 mmole/m²/day 1.5 1.5 -32.43 mmole/m²/day Across Channel Dist [km] Across Channel Dist [km] 1 1 -20 -20 0.5 0.5 -40 -40 0 0 -0.5 -0.5 -60 -60 -1 -1 -80 -80 -1.5 -1.5 -2 -100 -100 100 50 50 100 0 0 Distance from Mouth [km] Distance from Mouth [km] Zappa et al (2007) Wannikhof -- No Wind 2 2 0 0 -32.43 mmole/m²/day -51.54 mmole/m²/day 1.5 1.5 Across Channel Dist [km] Across Channel Dist [km] 1 1 -20 -20 0.5 0.5 -40 -40 0 0 -0.5 -0.5 -60 -60 -1 -1 -80 -80 -1.5 -1.5

-2

0

50

Distance from Mouth [km]

100

-100

-100

-2

0

50

Distance from Mouth [km]

100

Response of Surface Gas Flux to Variations in Net

- 1) Surface Flux of Oxygen is roughly equal to NEM for all condition, but influx of CO₂ becomes limited under net autotrophic conditions.
- 2) Net autotrophic conditions result in

Why do oxygen and carbon dioxide responds so differently?

Simulation = No Biology, No Wind Forcing, Both O_2 and CO_2 are supersaturated in river and in equilibrium with atmosphere in ocean.

What happens if you change the intensity of mixing?

 O_2 flux is reduced by 32%, pCO₂ flux is reduced by 49%

<u>Very simple numerical simulation:</u> <u>No Biology, no wind forcing, river is super-saturated in pCO₂ and O₂</u>

No Biology, Add Wind Forcing, Super-saturated river input

Runs with no biology and super-saturated river input:

