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Previous studies

› “ … hypoxic volume is driven by the variability of the transport of oxygen 
to the OMZ.” – Lachkar et al. (2018). 

› “The oxygen loss in the deep oceans can (be originated from) … a 
slowdown of meridional overturning circulation.”  -- Schmidtko et al. 
(2017).
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“The oxygen loss in the deep 
oceans can (be originated from) 
… a slowdown of meridional
overturning circulation.”  --
Schmidtko et al. (2017).
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“ … hypoxic volume is driven by the variability of the transport of oxygen to 
the OMZ.” – Lachkar et al. (2018). 

Biological consumption

Ventilation O2 supply

Total O2 trend
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Can we use oxygen to provide early warning 
for (interior) circulation changes?

How soon can the projected future circulation 
changes be detectable?
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North Atlantic Subpolar gyre (NASPG)

› Key gateway to the ocean’s interior
› Sensitive to climate change
› Relatively well observed
› Regions with good predictability skill
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Time of Emergence (ToE = trend / 2σ)
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Time of Emergence (ToE)
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Time of Emergence (ToE)
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or extreme event-related (for example, heatwaves, storms), can
also be pronounced and important45, but we are constrained here
by the temporal resolution of the available model output. In
addition, the coarse model grid (1!! 1!) eliminates small-scale
spatial variability. If natural variability is higher than we estimate
(but the trend is of similar magnitude) then ToE will be later than
we calculate.

The ToE is illustrated in Fig. 1a–d. The climate change
signals of pH and SST emerge very rapidly (global median of
1924 (±4.7 years) for pH and 2034 (±8.8 years) for SST;
±¼ inter-model s.d. on the global median). Indeed, the climate
change signal in pH already exceeds the bounds of natural
variability (ToEo2016) in 99% (±0.5%) of the open ocean. The
climate change signal in SST has also already emerged in the

subtropics and the Arctic. The climate change trends in PP and
interior oxygen content emerge later (global median of
2052 (±12 years) for oxygen and 2070 (±8.3 years) for PP).

The pace of climate change is represented here by the length of
time (in years) between the start of the climate change signal and
its emergence from the background natural variability (Fig. 1e–h).
The pace of change is uniformly very rapid in pH, occurring in
B25 years almost everywhere (see also Supplementary Fig. 7).
pH undergoes both a rapid pace of change and emerges early,
due to its very small interannual variability, and because a large
fraction of anthropogenic CO2 has been absorbed by the ocean46.
(Note however that in coastal waters, which are not resolved by
these global models, variability in pH is substantially greater47).
For SST, the pace is most rapid (o25 years) in subtropical
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Figure 1 | ToE and pace of climate change in ecosystem drivers. Multi-model median of the year when annual extrema exceed the climate change
trend (see ‘Methods’ section) for (a) SST, (b) PP, (c) pH and (d) interior oxygen content in the ‘business-as-usual’ scenario (RCP8.5). Note the different
colour scales for each variable. (e–h) The pace of climate change: the number of years between the start of climate change and the signal emerging
(see ‘Methods’ section). White areas indicate where ecosystem stress does not emerge above the range of variability for that parameter by 2100.
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by the temporal resolution of the available model output. In
addition, the coarse model grid (1!! 1!) eliminates small-scale
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subtropics and the Arctic. The climate change trends in PP and
interior oxygen content emerge later (global median of
2052 (±12 years) for oxygen and 2070 (±8.3 years) for PP).

The pace of climate change is represented here by the length of
time (in years) between the start of the climate change signal and
its emergence from the background natural variability (Fig. 1e–h).
The pace of change is uniformly very rapid in pH, occurring in
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pH undergoes both a rapid pace of change and emerges early,
due to its very small interannual variability, and because a large
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Figure 1 | ToE and pace of climate change in ecosystem drivers. Multi-model median of the year when annual extrema exceed the climate change
trend (see ‘Methods’ section) for (a) SST, (b) PP, (c) pH and (d) interior oxygen content in the ‘business-as-usual’ scenario (RCP8.5). Note the different
colour scales for each variable. (e–h) The pace of climate change: the number of years between the start of climate change and the signal emerging
(see ‘Methods’ section). White areas indicate where ecosystem stress does not emerge above the range of variability for that parameter by 2100.
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Variability (σ)

z

Surface and interior

Signal (trend)

z

ToE (trend / 2σ)

z

Surface (larger) variability hinders anthropogenic signals
Stable interior would be more sensitive to future changes
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Time of Emergence (ToE = trend / 2σ)
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Time of Emergence (ToE = trend / 2σ)
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ToE (1750m)
Temperature
Salinity
Oxygen

ToE = 2072 ToE = 2040 ToE = 2013
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ToE (1750m)

Forced changes Salinity Temperature Oxygen
Warming ✓ ✓
Circulation structure ✓ ✓ ✓
Ventilation rate ✓

ToE = 2072 ToE = 2040 ToE = 2013
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Mechanisms identification

Observations (oxygen, temperature, salinity)
› GLODAPv2 (Lauvset et al., 2017)
› WOD (World Ocean Database)
› More recent NASPG data (Rhein et al. 2017)

Models
› Offline, forced Ocean Bigeochemical Physical model (diagnose mechanisms)
› CMIP5 ESM models (Projections, Historical-RCP8.5, 1971-2100)

• CESM1-BGC � IPSL-CM5A-LR
• GFDL-ESM2G � IPSL-CM5A-MR
• GFDL-ESM2M � MPI-ESM-LR
• HadGEM2-CC � NorESM1-ME
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Observational coverage (1961-2016)
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Number or unique years with observations
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Temporal variability of interior (1500m) NASPG oxygen
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Temporal variability of interior (1500m) NASPG oxygen
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Temporal variability of interior (1500m) NASPG oxygen
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Positive NASPGi phase (1989-1995)

Negative NASPGi phase (2004-2011)
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Mechanistic understanding contrasting NASPG regimes
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Positive NASPGi
phase (1989-1995)

Negative NASPGi
phase (2004-2011)
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Water mass properties for contrasting NASPG regimes
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Water mass properties for contrasting NASPG regimes
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Water mass properties for contrasting NASPG regimes
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Water mass properties for contrasting NASPG regimes
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Interior NASPG oxygen multi-decadal variability
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Projections
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Projections (CMIP5 models)
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Difference between
(2071-2100)

and
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MMA-ESM = CMIP5 models
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Projections (CMIP5 models)
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Time of Emergence (ToE)
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Detectability of circulation recovery
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Peak CO2
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Detectability of circulation recovery (ToR = Time of Recovery)
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Can we use oxygen to provide early warning 
for (interior) circulation changes?

How soon can the projected future circulation 
changes be detectable?



Summary

› On multidecadal timescales, subpolar gyre strength drives the interior NASPG oxygen.

› Future projections:
• Steady slows down in NASPG strength over the 21st century
• This leads to deoxygenation in the interior subpolar North Atlantic, twice of the global mean
• Time of emergence of O2 signal is in early 21st century, earlier than T and S
• Interior oxygen can be used to detect anthropogenic-induced circulation change and recovery

Tjiputra et al. (2018), Mechanisms and early detections of multidecadal oxygen changes in the interior
subpolar North Atlantic, Geophysical Research Letters, 45, doi:10.1029/2018/GL077096.
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Discussion points

› Our confidence in oxygen as proxy for circulation strongly depends on the assumption
that Redfield ratio holds today and into the future. Is this reasonable?

› With our advanced understanding in oxygen-physical relationship, should modellers 
guide the observational community or be more involved in designing future ocean
monitoring strategy?
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Labrador MLD and NASPG oxygen relationships
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Projections (best-performing ESMs)
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