

OCB-WORKSHOP 2019

Oxygen as a proxy for circulation and ventilation variability

Jerry Tjiputra, w/ contributions from L. Bertini, A. Olsen, S. Lauvset, J. Schwinger, N. Goris, R. Steinfeldt, C. Heinze NORCE Norwegian Research Centre Bjerknes Centre for Climate Research, Bergen, Norway

OCB WORKSHOP, WHOI, 24-27 JUNE 2019

A HAVFORSKNINGSINSTITUTTE

uni Research

UNIVERSITY OF BERGEN

36

30

wviu

uni Research

UNIVERSITY OF BERGEN

36

wviya

b

"The oxygen loss in the deep oceans can (be originated from) ... a slowdown of meridional overturning circulation." ---Schmidtko et al. (2017).

"... hypoxic volume is driven by the variability of the transport of oxygen to the OMZ." – Lachkar et al. (2018).

Can we use oxygen to provide early warning for (interior) circulation changes?

How soon can the projected future circulation changes be detectable?

North Atlantic Subpolar gyre (NASPG)

- > Key gateway to the ocean's interior
- > Sensitive to climate change
- > Relatively well observed
- > Regions with good predictability skill

-BSummer

Time of Emergence (ToE)

@AGUPUBLICA

Global Biogeochem

٨

RESEARCH ARTICLE 10.1002/2015GB005310

Key Points:

 Natural variability drives strong fluctuations in dissolved oxygen within the ocean interior Natural variability challenges detection of forced trends in dissolved oxygen • Time of emergence of forced trends is quantified based on state, trends, and spatial patterns

ATIONS	
nical Cycles	
Finding forced trends in oceanic o	xygen
Natthew C. Long ¹ , Curtis Deutsch ² , and Taka Ito ³	
Biogeosciences, 12, 3301–3320, 2015 www.biogeosciences.net/12/3301/2015/ doi:10.5194/bg-12-3301-2015 © Author(s) 2015. CC Attribution 3.0 License.	Biogeosciences
© 0 **	nature
Emergence of multiple oc	
suite with an Earth system K. B. Rodgers ¹ , J. Lin ² , and T. L. Frölicher ³ ¹ Program in Atmospheric and Oceanic Science ² Dept. of Computer Science, Princeton Univers ³ Environmental Physics, Institute of Biogeoche	ARTICLE Received 15 Jul 2016 Accepted 20 Jan 2017 Published 7 Mar 2017 DOI: 10.1038/ncomms14682 OPEN Rapid emergence of climate change in environmental drivers of marine ecosystems
	Stephanie A. Henson ¹ , Claudie Beaulieu ² , Tatiana Ilyina ³ , Jasmin G. John ⁴ , Matthew Long ⁵ , Roland Séférian ⁶ , Jerry Tjiputra ⁷ & Jorge L. Sarmiento ⁸

Time of Emergence (ToE)

Surface and interior

Sea level Variability	(σ) Signal (f	trend) ToE (trend / 2	2σ)
e layer			
ca. 4000 m ca. 4000 m	z Oxygen decrease du er) variability hinders a	e to biological processes anthropogenic signals	N COM

UNIVERSITY OF BERGEN

Time of Emergence (ToE = trend / 2σ)

ToE (1750m)

Temperature Salinity Oxygen

ToE (1750m)

Mechanisms identification

Observations (oxygen, temperature, salinity)

- > GLODAPv2 (Lauvset et al., 2017)
- > WOD (World Ocean Database)
- > More recent NASPG data (Rhein et al. 2017)

Models

- > Offline, forced Ocean Bigeochemical Physical model (diagnose mechanisms)
- > CMIP5 ESM models (Projections, Historical-RCP8.5, 1971-2100)
 - CESM1-BGC
 - GFDL-ESM2G
 - GFDL-ESM2M
 - HadGEM2-CC

- IPSL-CM5A-LR
- IPSL-CM5A-MR
- MPI-ESM-LR
- NorESM1-ME

glodapv2

Observational coverage (1961-2016)

Temporal variability of interior (1500m) NASPG oxygen

Temporal variability of interior (1500m) NASPG oxygen

Temporal variability of interior (1500m) NASPG oxygen

Negative NASPGi phase (2004-2011)

Mechanistic understanding contrasting NASPG regimes

Projections (CMIP5 models)

Projections (CMIP5 models)

NERSC

isen Center, Berge

uni Research

UNIVERSITY OF BERGEN

🔺 HAVFORSKNINGSINSTITUTTET

Time of Emergence (ToE)

Detectability of circulation recovery

Detectability of circulation recovery (ToR = Time of Recovery)

uni Research

Can we use oxygen to provide early warning for (interior) circulation changes?

How soon can the projected future circulation changes be detectable?

Summary

> On multidecadal timescales, subpolar gyre strength drives the interior NASPG oxygen.

- > Future projections:
 - Steady slows down in NASPG strength over the 21st century
 - This leads to deoxygenation in the interior subpolar North Atlantic, twice of the global mean
 - Time of emergence of O₂ signal is in early 21st century, earlier than T and S
 - Interior oxygen can be used to detect anthropogenic-induced circulation change and recovery

Tjiputra et al. (2018), Mechanisms and early detections of multidecadal oxygen changes in the interior subpolar North Atlantic, *Geophysical Research Letters*, 45, doi:10.1029/2018/GL077096.

Discussion points

- > Our confidence in oxygen as proxy for circulation strongly depends on the assumption that Redfield ratio holds today and into the future. Is this reasonable?
- With our advanced understanding in oxygen-physical relationship, should modellers guide the observational community or be more involved in designing future ocean monitoring strategy?

Labrador MLD and NASPG oxygen relationships

Projections (best-performing ESMs)

