US GO-SHIP (2015-2020): Overview

https://usgoship.ucsd.edu/

Alison Macdonald (WHOI)

With slides and input from the US GO-SHIP Executive Council, especially Lynne Talley (SIO) and Greg Johnson (NOAA/PMEL) Co-Chairs

GO-SHIP Executive Council

Co-chairs: Greg Johnson NOAA/PMEL & Lynne Talley SIO

Leticia Barbero: NOAA/AOML

Molly Baringer: NOAA/AOML

Craig Carlson: UCSB

Brendan Carter: NOAA/PMEL

Andrew Dickson: SIO

Scott Doney: U. Virgina

Richard Feely: NOAA/PMEL

Alison Macdonald: WHOI

Jim Swift: SIO

Andreas Thurnherr: LDEO

Mark Warner: UW

Rik Wanninkhof, ex officio (Intl. GO-SHIP co-chair) NOAA/AOML

U.S. GO-SHIP Committee: All NOAA/NSF funded PIs + chief & co-chief scientists within 3 years of their last cruise + ...

Vision and objectives (2015-2020) International GO-SHIP http://www.go-ship.org

GO-SHIP principal scientific objectives:

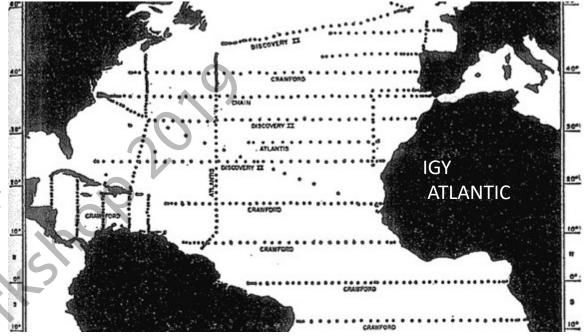
- > understanding & documenting large-scale ocean property distributions, their changes, & drivers of those changes
- > addressing questions of a future ocean that will
 - > see increases in dissolved inorganic carbon, acidification & stratification, and
 - > experience changes in circulation & ventilation processes due to global warming and a changing water cycle.

US GO-SHIP

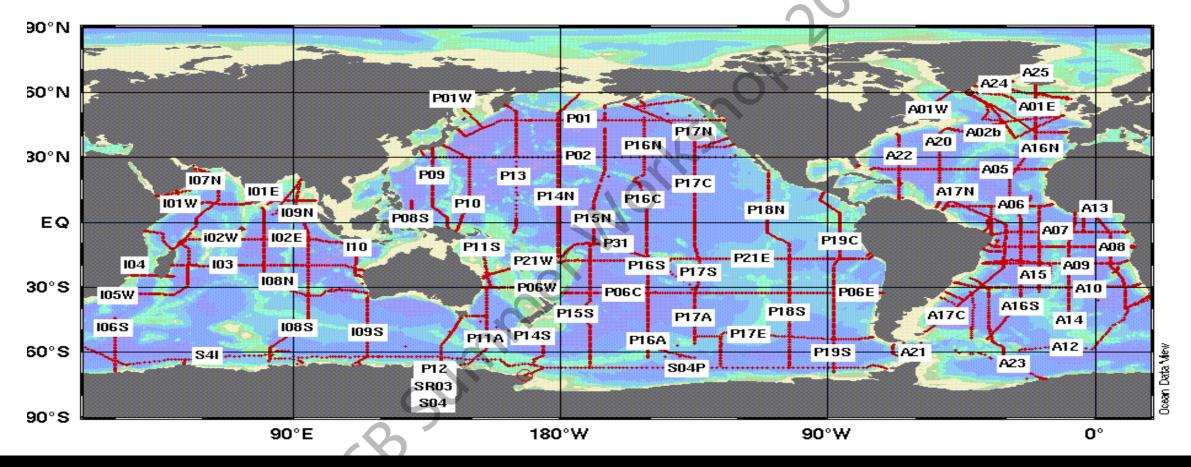
Goals

GO-SHIP provides the highest required accuracy global "decadal scale, basin-wide, full water column, observations of multiple properties

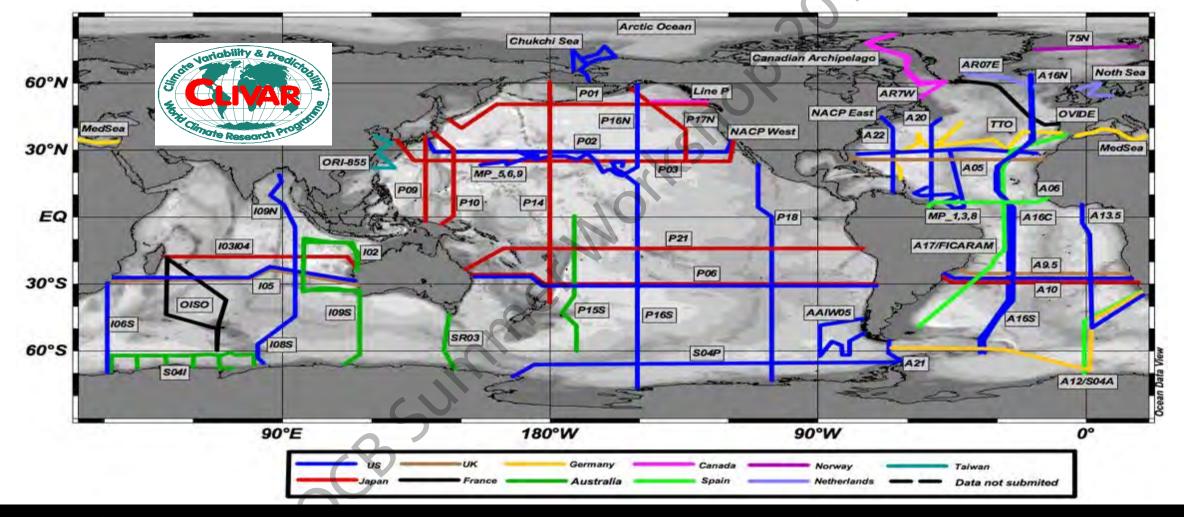
To resolve changes in heat, freshwater, carbon oxygen, nutrient & transient tracer inventories



Goals

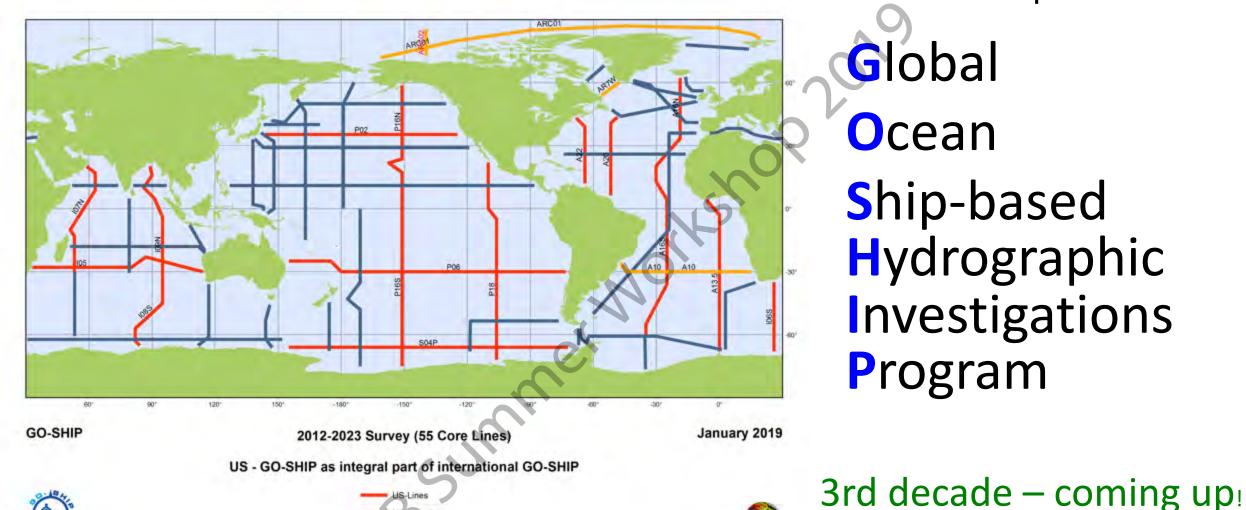

Prior Global Surveys

- IGY 1957-1958
 - multiple coast to coast transects
 - .e.g. Atlantic 24N mean 160 km spacing
 - T, S, O₂, nutrients
- **GEOSECS** 1970s
 - Full N/S lines in each major basin
 - 150 stations global
 - 50 30L samples/station
 - 270-1000 L samples at 20 depths per station
- Pre-WOCE
 - First coast-to-coast, closely spaced, full-depth sections of GO-SHIP core parameters
 - arguably AJAX, now A13.5 along 0°E, followed by SAVE, TPS-10, etc.


WOCE/JGOFS 1990s: executed global baseline survey emphasizing increased spatial coverage over repeats of previous lines

- <= 50 nm station spacing
- 24-36 depths per station
- Specified standards for accuracy & precision

- JGOFS provided chemistry & in particular carbon parameters
- (U.S.) 2 yr to open data policy

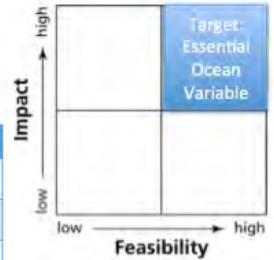

CLIVAR 2000s: reoccupation of key, zonal mid-latitude flux & meridional inventory sections in each deep basin

- Aiming for 30 nm station spacing
- Specified standards for accuracy & precision

- Support of ancillary projects
- Immediate open data policy (US)

US GO-SHIP 2015-2020: second decadal reoccupation

- Aiming for 30 nm station spacing
- Specified standards for accuracy & precision


Support of ancillary projects

Generated by www.jcommops.org, 07-Jan-19

Immediate open data policy (for all)

U.S. GO-SHIP defines Measurement Priorities through Essential Ocean Variables (EOVs): defined by GOOS Expert Panels

PHYSICS	BIOGEOCHEMISTRY	BIOLOGY AND ECOSYSTEMS
Sea state	Oxygen	Phytoplankton biomass and diversity
Ocean surface stress	Nutrients	Zooplankton biomass and diversity
Sea ice	Inorganic carbon	Fish abundance and distribution
Sea surface height	Transient tracers	Marine turtles, birds, mammals abundance and distribution
Sea surface temperature	Particulate matter	Hard coral cover and composition
Subsurface temperature	Nitrous oxide	Seagrass cover and composition
Surface currents	Stable carbon isotopes	Macroalgal canopy cover and composition
Subsurface currents	Dissolved organic carbon	Mangrove cover and composition
Sea surface salinity	Ocean colour	Ocean Sound
Subsurface salinity		Microbe biomass and diversity (*emerging)
Ocean surface heat flux		Benthic invertebrate abundance and distribution (*emerging)

EOVs are central to GOOS strategic mapping, which
describes the
observing system in
terms of its relation to
the GOOS mandates

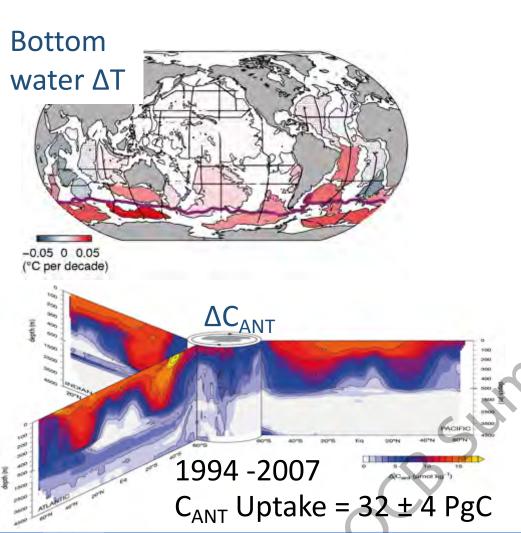
MEASUREMENTS

U.S. GO-SHIP:

Essential Ocean Variables (EOVs): defined by the GOOS Expert Panels

PHYSICS	BIOGEOCHEMISTRY	BIOLOGY AND ECOSYSTEMS
Sea state	Oxygen	Phytoplankton biomass and diversity
Ocean surface stress	Nutrients	Zooplankton biomass and diversity
Sea ice	Inorganic carbon	Fish abundance and distribution
Sea surface height	Transient tracers	Marine turtles, birds, mammals abundance and distribution
Sea surface temperature	Particulate matter	Hard coral cover and composition
Subsurface temperature	Nitrous oxide	Seagrass cover and composition
Surface currents	Stable carbon isotopes	Macroalgal canopy cover and composition
Subsurface currents	Dissolved organic carbon	Mangrove cover and composition
Sea surface salinity	Ocean colour	Ocean Sound
Subsurface salinity		Microbe biomass and diversity (*emerging)
Ocean surface heat flux		Benthic invertebrate abundance and distribution (*emerging)

US GO-SHIP measurements


Other parameters (biological) ancillary, under discussion by SCOR WG 154 & to be discussed at OceanObs19

MEASUREMENTS

US GO-SHIP Level 1 measurements: required with strict data policy

From http://usgoship.ucsd.edu/about

Dissolved inorganic carbon (DIC)

Total Alkalinity (TAlk)

рН

CTD pressure, temperature, salinity (calculated)

CTD oxygen (sensor)

Bottle salinity

Nutrients by standard auto analyzer (NO3/NO2, PO4, SiO3)

Dissolved oxygen

Chlorofluorocarbons (CFC-11, -12) and SF6

Dissolved organic carbon

Dissolved organic nitrogen

Surface underway system (T, S, pCO2)

ADCP shipboard

ADCP lowered

Underway navigation and bathymetry

Meteorological.

MEASUREMENTS: LEVEL 1

Level 2: Highly desirable

(with strict data policy)

- CTD Transmissometer
- Tritium-3He was previously L1
- Discrete pCO2
- 14C by AMS
- CCI4
- CFC-113 was previously L1
- ∂13C of DIC
- Fe/trace metals
- Surface underway system: nutrients,
 O2, Chl, skin temperature

From http://usgoship.ucsd.edu/about

* EOVs

Level 3: Ancillary (Data policy set outside GO-

SHIP) Leveraging: new technology, biology, etc

- Chlorophyll
- Primary production
- HPLC pigments
- POC*
- UVP*
- Optical instruments*
- CDOM*
- Fluorometry and backscatter*
- Rare earth elements (REE)
- Experimental continuous analyzers
- ∂15N
- Isotopes of NO3
- 32Si
- ∂180 of H20
- NH4
- Low level nutrient
- Total organic phosphorus

- Isotopes of O2N2, Ar, O2Methyl halides
 - DMS
 - N2O* move to L1?
 - Bacterial Abundance
 - **Bacterial Production**
 - Dissolved combined neutral sugars
 - DNA
 - Floats
 - Gliders
 - Drifters
 - Chipods/turbulence

MEASUREMENTS: LEVELS 2 & 3

Levels 2 and 3

Goals for US GO-SHIP (2015-2020)

- Reoccupy global survey of key full-depth coast-to -coast sections for assessment of changes in
 ocean property inventories and transports (heat, freshwater, oxygen, carbon, transient tracers, etc)
- Provide climate-ready, reference standard data as part of international GO-SHIP, contributing to GOOS and GCOS, providing reference datsets for Argo and other autonomous platforms
- Provide opportunities for synergistic experimental and emerging programs: contact Jim Swift and/or Isa Rosso (SIO) for information
- Data management for all Level 1 (required), 2 (recommended), 3 (ancillary) data sets
- Training early career scientists and students: see website and contact Isa Rosso (SIO) and/or chief scientist for information
- Analysis and publication of results (funding is currently limited to postdocs & C_{ANT} analysis)
 Now Planning for the Next 5 years

Goals

CLIVAR/OCB U.S. GO-SHIP Review

Strengths

Weaknesses

Opportunities

Threats

Heather

14