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Generic size-based model
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Figure 2
Clearance rate versus weight for organisms performing active predation, photosynthesis, and diffusion feeding on phosphorus. The
solid lines are fits to data with the exponent a shown above each panel; the dotted lines are fits with theoretical exponents 3, 2, and 1 for
panels a, b, and c, respectively (see Supplemental Table 2). (a) Clearance rate βA for active predation by zooplankton ( green hexagons)
and fish ( yellow squares), from Kiørboe (2011). (b) Clearance rate βL (affinity) for carbon uptake from a series of experiments with
diatoms under identical conditions (Taguchi 1976). Data compilations covering a wider range of sizes and phytoplankton groups give a
similar exponent but a larger scatter (Schwaderer et al. 2011). (c) Clearance rate βD (affinity) for diffusion feeding on dissolved
phosphate, from Edwards et al. (2012) and Tambi et al. (2009). Abbreviation: ESD, equivalent spherical diameter.

limited by self-shading of photons (the so-called package effect) (Morel & Bricaud 1981). For the
present arguments, it is sufficient to consider that the cross-sectional area of the cell ∝ l2 limits
photosynthesis (Figure 2b):

βL = bLl2. (2)

The clearance rate βL is often termed light affinity or photosynthetic efficiency and is measured in
dimensions of carbon fixed per photon multiplied by area. In terms of weight-specific scaling, the
power 2 scaling of βL results in a scaling of weight-specific rates of carbon fixation βL/w ∝ w−1/3—
i.e., smaller organisms have a higher specific rate of carbon fixation than larger ones. Organisms
smaller than a certain size are therefore able to fix more carbon by photosynthesis than by active
encounter because specific uptake by active encounter is independent of size.

Diffusion Feeding
Organisms that encounter resource items as they bump into the surface of the organism because
of Brownian motion are termed diffusion feeders (Fenchel 1984). Diffusion feeding is used to
assimilate dissolved organic molecules, inorganic carbon, and nutrients. The uptake rate is limited
by the number of uptake sites on the surface of the cell, which can be expected to scale with
l2. However, the uptake also removes resources from the vicinity of the cell surface and creates
a boundary layer of lower resource concentrations near the cell (Munk & Riley 1952). This
effectively leads to the clearance rate βD being limited by diffusion rather than by the surface, with
a scaling proportional to the linear dimension of the cell (reviewed in Fiksen et al. 2013):

βD = bDl1. (3)

Weight-specific uptake rates are then ∝ w−2/3, i.e., high for small cells and declining with
size. Small diffusion-feeding cells therefore have a higher encounter rate with dissolved nutri-
ents or macromolecules than they could have obtained by active feeding. The theoretical scaling

3.6 Andersen et al.

Data from Edwards et al (2015) and Kiørboe (2011)

OCB 2019 Su
mmer 

Works
hop



DTU Aqua17 May 2019 Predictive Macroecology

http://oceanlife.dtuaqua.dk/Plankton

OCB 2019 Su
mmer 

Works
hop



DTU Aqua17 May 2019 Predictive Macroecology

Clearance 
rates/affinities MortalityIndividual-

level 
processes

Traits, !

Metabolic 
costs

Environm
ent

Scaling

Cell size, "# Trait, "$ Trait, "%

Constraints and 

trade-offs

Trait distribution

B(!, ()
Optimal traits

!∗(()Community

+, !
+-

1
,(!) = 0123(!)

4 ! 5 (
4 ! 5 ( + 0123 !

− 8 ! −9(!, ()

r(", () 

OCB 2019 Su
mmer 

Works
hop



DTU Aqua17 May 2019 Predictive Macroecology

Climate change impact on 
plankton ecosystem function
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cells and to simulate how an entire community adapts to
environmental conditions of light, nutrients, food, and tem-
perature. As an example, we have simulated the seasonal suc-
cession in a temperate system and its response to a
temperature increase. Despite the conceptual simplicity of
the model, the community response to a temperature
increase is complex.

The temperature response of the cells depends upon which
process is limiting. Limitation by biosynthesis leads to a
strong temperature response, while resource limitation leads
to weak temperature responses. On the level of individual

cells, we find that small cells are typically limited by their abil-
ity to perform biosynthesis, while larger cells are limited by
resource uptake. This difference makes small cells more sensi-
tive to changes in temperature than large cells, as the biosyn-
thesis rate changes faster with temperature than resource
uptake rates. This low-temperature response under nutrient
limitation has also been observed experimentally (Marañón
et al. 2018) and in meta-analysis (Thomas et al. 2017). Others
observed different effects of temperature depending on
whether the system was bottom-up or top-down controlled
(Chen et al. 2012; Peter and Sommer 2013; Morán et al.

Fig. 5. Seasonal succession in a temperate water column. Note varying ranges on the concentrations of carbon. Mean investments are calculated as bio-
mass weighted mean: φL =

P
i φL:i Bi=n, where n = 20 is the number of trait groups. The two lowest panels show the relative gains of nutrients coming

from phagotrophy (JF : JN). [Color figure can be viewed at wileyonlinelibrary.com]

Serra-Pompei et al. Temperature and resource limitation
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temperate seasonal succession. In this example, the early
bloom period will not be resource limited, while the summer
is. If we instead consider a low-latitude oligotrophic ocean,
resource limitation will be stronger throughout the year, and
we expect the temperature response to be even weaker. In any
case, the diversity of temperature responses makes it difficult
to apply a single Q10 or Arrhenius temperature function to pro-
tist growth rates in ecosystem models. Even assuming differen-
tial temperature effects between autotrophs and heterotrophs
(Brown et al. 2004) is insufficient (Chen and Laws 2017).

Measures of ecosystem function increase overall with a Q10

around 1.8; a warmer ocean fixes more carbon, creates more
DOM and rDOM, sends more carbon to HTLs, and respires
more carbon. Nevertheless, the warmer ecosystem is less effi-
cient at retaining carbon, as more of it is respired. We also find
a negative relationship between ef-ratio (export relative to
GPP) and temperature, in agreement with the literature
(Pomeroy and Deibel 1986; Laws et al. 2000, 2011; Cael and
Follows 2016; Cael et al. 2017). There is a reduction in relative
cell size of the community, due to higher competition for
nutrients during the stratified period (even without the ther-
mal effect on water column stability), and the better perfor-
mance of bacteria due to higher biosynthetic rate and DOC
concentrations. Overall, there is an enhancement in the
importance of the microbial loop and the microbial pump.

The model is based on simplifications, particularly in the
values of Q10, in the role of DOM, in the choice of a fixed stoi-
chiometry, and in the physics. Regarding Q10, more knowledge
is needed on the temperature of predator–prey interactions and
the uptake of dissolved compounds. If, for example, the Q10 of
predator–prey interaction is larger than 1, the overall commu-
nity Q10 will increase. Production and degradation of DOM
(labile, semilabile, refractory DOM, etc.) are sketchily repre-
sented. An example is the production of refractory DOM, which
we assume is created by viral lysis of bacteria, represented by a
quadratic mortality. The assumption of fixed stoichiometry is a

rough simplification, particularly in autotrophs, which have
variable C : N : P ratios due to luxury uptake (Droop 1974), and
to differing investments in chloroplast, ribosomes, and cell
walls in response to resource conditions (Toseland et al. 2013).
As temperature affects competition for resources and invest-
ments in biosynthesis, it will also affect stoichiometry and thus
macronutrients cycling prediction under climate change scenar-
ios (Yvon-Durocher et al. 2017). We have now resolved the
direct effects of temperature on organisms and the overall com-
munity, but left open the question of the relative strength of
indirect (effects due to changes in the physical environment)
vs. direct effects of climate change on the planktonic commu-
nity. Overall, incorporation of the considerations previously
mentioned will refine the results; however, they are not
expected to fundamentally alter the general conclusion that the
community-level temperature response is smaller than expected
from metabolic considerations.

Conclusion
Effects of temperature on physiological processes have

been studied for over a century, nevertheless, we argue that
interpretation of data related to global warming could have
been mislead by effects of resource limitation (López-Urrutia
and Morán 2007; Behrenfeld et al. 2016). Here, by explicitly
representing effects of temperature on processes responsible
for growth in a mechanistic model, we show that patterns
in the individual level can be scaled to observed trends in
the ecosystem level and that species interactions can actu-
ally exacerbate nutrient limitation by increasing competi-
tion just by temperature effects per se. We anticipate an
strengthening of the microbial activity and the increasing
importance of the dissolved pathway and the microbial
pump for carbon sequestration in the oceans, at least when
it comes to direct effects of temperature in the microbial
food web.
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Fig. 8. Ecosystem functions and their response to a 3 !C increase in temperature. Panel A shows total GPP over a year and its further fate. The functions
are: GPP, production of rDOM, respiration, losses to export, and losses to HTLs. Panel B shows the total change in percent for each rate in response to
the 3 !C increase in temperature. Panel C shows the percent change relative to GPP in response to the temperature increase. Carbon flows relative to GPP
are: export efficiency (ϵCexp = Cexported/GPP), rDOM production efficiency (ϵrDOM = γB2 /GPP), trophic transfer efficiency (ϵHTL = mHTLG2 /GPP), and respira-
tion (ϵresp = JR,G1 + JR,G2 + JR,Bð Þ=GPP). [Color figure can be viewed at wileyonlinelibrary.com]

Serra-Pompei et al. Temperature and resource limitation

12

Serra-Pompei et al (2019) Limn. Oceanograpy

OCB 2019 Su
mmer 

Works
hop



DTU Aqua17 May 2019 Predictive Macroecology

Traits !

Trait distribution "($)

ShellDiazotro
phy VacuoleLight 

harvesting
Cell 
size

1) Which traits?
2) Functional groups vs traits?

Web app: http://oceanlife.dtuaqua.dk/Plankton/

OCB 2019 Su
mmer 

Works
hop



DTU Aqua17 May 2019 Predictive Macroecology 15

ELSEVIER Ecological Modelling 92 (1996) 33-53 

Effective variables in ecosystem models with an application to 
phytoplankton succession 
Kai-W. Wirtz *, Bruno Eckhardt 
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Abstract 

To account for changes in the distribution of species grouped together in an ecosystem compartment we introduce 
averaged physiological parameters and derive equations for their dynamics. These parameters may describe shifts from 
larger to smaller species or between species with high and low demand of some nutrient, for example. Specifically, in a 
model for the phytoplankton of Lake Constance, these effective variables describe the shift between diatomic and 
non-diatomic as well as between rapidly and slowly growing algae. With reasonable values for the remaining biological and 
physical parameters and a simple model for zooplankton grazing, the dynamics of the effective variables then reproduces the 
succession of algal species in Lake Constance, as observed and described by Sommer (1987, Progr. Phycol. Res., 5: 
123-178). 

Keywords: Lake ecosystems; Phytoplankton; Succession 

1. Introduction 

The net of mutual relationships between species in ecosystems is usually much too complex to allow for a 
detailed description. One thus groups populations into compartments, defined by similar trophic levels, similar 
nutrient demands, spatial coexistence and other criteria tailored to the specific features of the system under 
consideration. To complete the model, one needs functional forms of couplings between compartments, e.g. 
Michaelis-Menten-like growth laws or predator-prey interactions, as well as reasonable estimates of the 
interaction parameters. The determination of the latter is a rather difficult problem and often a strong motivation 
to keep the number of variables and thus couplings small. 

More variables are needed, if the interaction of a compartment with the environment changes in the course of 
time. For instance, a shift in the age structure or in the supply of nutrients may influence the reproduction rates 
and the species distribution within a compartment. One can account for this by introducing new subcompart- 
ments and relationships, at the cost of having to specify many new interactions. Alternatively, one can try to 

* Corresponding author. Environmental Systems Research Center, University of Kassel, 34109 Kassel, Germany. Fax: (49) (561) 
804-3176. 

0304-3800/96/$15.00 Copyright © 1996 Published by Elsevier Science B.V. All rights reserved. 
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A biodiversity-inspired approach to aquatic ecosystem modeling

Jorn Bruggeman1 and Sebastiaan A. L. M. Kooijman
Vrije Universiteit, Faculty of Earth & Life Sciences, Department of Theoretical Biology, de Boelelaan 1085,
1081 HV Amsterdam, The Netherlands

Abstract

Current aquatic ecosystem models accommodate increasing amounts of physiological detail, but marginalize
the role of biodiversity by aggregating multitudes of different species. We propose that at present, understanding
of aquatic ecosystems is likely to benefit more from improved descriptions of biodiversity and succession than
from incorporation of more realistic physiology. To illustrate how biodiversity can be accounted for, we define
the system of infinite diversity (SID), which characterizes ecosystems in the spirit of complex adaptive systems
theory as single units adapting to environmental pressure. The SID describes an ecosystem with one generic
population model and continuity in species-characterizing parameters, and acquires rich dynamics by modeling
succession as evolution of the parameter value distribution. This is illustrated by a four-parameter phytoplankton
model that minimizes physiological detail, but includes a sophisticated representation of community diversity
and interspecific differences. This model captures several well-known aquatic ecosystem features, including
formation of a deep chlorophyll maximum and nutrient-driven seasonal succession. As such, it integrates
theories on changes in species composition in both time and space. We argue that despite a lack of physiological
detail, SIDs may ultimately prove a valuable tool for further qualitative and quantitative understanding of
ecosystems.

Biodiversity poses a perennial problem for ecosystem
modelers. Confronted with a reality fraught with species,
dependencies, and physiological detail, one cannot help but
think that simple models cannot do it justice (Anderson
2005). Simple models aggregate large numbers of species
into single state variables, and by doing so they lose the
ability to reproduce ranges of behavior shown by detailed
species-explicit models (Raick et al. 2006). Also, the use of
aggregation puts models at a greater distance from
empirical results, first because assimilation of empirically
determined, species-specific parameter values to parameters
of virtual aggregates of species is a difficult and largely
subjective process; second because aggregate models pro-
vide only indirect information about individual species
observed in the field. Not surprisingly, large ecosystem
models that describe many classes of species explicitly have
recently gained in popularity (Baretta et al. 1995; Quéré et
al. 2005). However, continued diversification of functional
groups may create more problems than it solves. Increasing
the number of groups within ecosystem models dilutes the
available empirical information per model unit, and
therefore increases the uncertainty per parameter. Consid-
ering the substantial uncertainty already associated with
parameters of moderate-size ecosystem models, this route
seems unappealing. Also, it is easy to overlook that as the
number of variables within an ecosystem model increases,
so does the amount of information needed to initialize the
model. A utopian species-complete model would require
initial abundances of every single ecosystem species (and

their substrates) to arrive at accurate predictions. Even if it
were possible, complete retrieval of this information is
certain to prove so costly in practice that the actual value of
such detailed models for most applications is debatable.

The merits of incorporating more species in ecosystem
models are well recognized, but perpetually adding more
explicitly modeled species primarily brings uncertainty and
complexity. Instead, we propose a hybrid approach that
builds on simple aggregate models, and bridges voids (in
quantitative knowledge) between species classes according
to unifying biological principles, e.g., thermodynamic
constraints and body size scaling relations. The use of
a limited number of functional groups, in combination with
interpolation on the basis of unifying principles, replaces
the unfeasible amount of species-specific information
otherwise needed to model realistic diversity. To allow for
interpolation between species, all species are modeled with
the same, omnipotent population model; interspecific differ-
ences are captured by differences in values of key
parameters—traits—rather than differences in model struc-
ture. Application of unified models to several similar
species is not rare (Ebenhöh et al. 1997), but to our
knowledge, such unification has not been applied consis-
tently across ecosystems. Indeed, because of the large
diversity within such systems, this is not a trivial affair. It
places serious demands on the modularity and consistency
of the model, and necessitates a modeling approach that
spans species and functional groups. Such an approach is
the dynamic energy budget (DEB) theory (Kooijman 2000),
which has been successful at describing a wide variety of
species, and is demonstrably capable of combining tradi-
tionally distinct strategies as autotrophy and heterotrophy
(Kooijman et al. 2002; Troost et al. 2005).

As a next step toward simple biodiversity-based models,
we assume continuity in trait values. Traits can take any
value, and any combination of different trait values is

1 Corresponding author ( jorn.bruggeman@falw.vu.nl).

Acknowledgments
We thank Bob Kooi and two anonymous reviewers for their

comments.
This research was supported by the Netherlands Organisation

for Scientific Research (NWO) through grant 635.100.009.

Limnol. Oceanogr., 52(4), 2007, 1533–1544

E 2007, by the American Society of Limnology and Oceanography, Inc.

1533

indeed at least in part arise through local concentration of
species with high light affinity and chlorophyll content, as
suggested by our results.

In Margalef ’s Mandala (Margalef 1978), phytoplankton
succession is viewed as traversing a phase plane defined by
nutrient concentration on the one hand and turbulence on
the other. The initial high-turbulence, high-nutrient envi-
ronment is replaced by a stratified depleted environment as
the year progresses, with distinct niches for different groups
of species (respectively: diatoms, coccolithophorids, dino-
flagellates) along this trajectory. Margalef explained this
succession in terms of differential species-specific affinities
for limiting nutrients, which in turn have been linked to
morphology and cell size (Sournia 1982a; Aksnes and Egge
1991; Chisholm 1992). The concept of affinity-driven
succession applies seamlessly to (near-surface) seasonal
succession as observable in our results: As the bloom
persists, colonizing species with low nutrient affinities are
replaced by species with higher nutrient affinity. Thus, our
result corroborates that nutrient availability and differ-
ences in nutrient affinity may control succession; this is also
tentatively indicated by in-situ microcosm experiments
demonstrating that nitrate addition in oligotrophic envir-
onments greatly changes the phytoplankton community
structure (Carter et al. 2005).

Several studies have suggested that the capacities for
light and nutrient harvesting in phytoplankton might be
negatively correlated (Huisman and Weissing 1995; Leibold
1997). In the present model such a correlation is not

Fig. 4. Simulated forcing, nutrient, biomass, and trait means as a function of time (horizontal) and depth (vertical) for the vertically
structured setup. Shown respectively, daily mean of the light intensity (a), turbulent diffusivity (b), nutrient concentration (c), structural
biomass concentration (d), the mean light-harvesting investment (e), and the mean nutrient-harvesting investment (f). Structural biomass
is integrated over the whole trait distribution, i.e., it represents the lump sum of all virtual species. Mean investments are masked where
the total structural biomass does not exceed the immigrating background level of 0.5 mmol L21; this is the case in deep water, typically
below 100 m. Gray scales correspond to the value of the plotted variables, with white denoting complete absence, as indicated by the scale
on the right. Only the top 200 m of the water column is shown; beyond this level, plotted variables do not change with increasing depth.

Fig. 5. Light-harvesting biomass as a function of time
(horizontal) and depth (vertical) for the vertically structured
setup. This quantity equals the product of structural biomass (Fig.
4d) and the mean light-harvesting investment (Fig. 4e), and can
serve as chlorophyll proxy.

1540 Bruggeman and Kooijman

Marine mixotrophy increases trophic transfer
efficiency, mean organism size, and vertical carbon flux
Ben A. Warda,b,1 and Michael J. Followsc

aSchool of Geographical Sciences, University of Bristol, Bristol BS8 1SS, United Kingdom; bLaboratoire des Sciences de l’Environnement Marin, Institut
Universitaire Européen de la Mer, Technopole Brest Iroise, 29280 Plouzané, France; and cDepartment of Earth, Atmospheric and Planetary Sciences,
Massachusetts Institute of Technology, Cambridge, MA 02139

Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved December 22, 2015 (received for review August 28, 2015)

Mixotrophic plankton, which combine the uptake of inorganic re-
sources and the ingestion of living prey, are ubiquitous in marine
ecosystems, but their integrated biogeochemical impacts remain
unclear. We address this issue by removing the strict distinction be-
tween phytoplankton and zooplankton from a global model of the
marine plankton food web. This simplification allows the emergence
of a realistic trophic network with increased fidelity to empirical
estimates of plankton community structure and elemental stoichi-
ometry, relative to a system in which autotrophy and heterotrophy
are mutually exclusive. Mixotrophy enhances the transfer of bio-
mass to larger sizes classes further up the food chain, leading to an
approximately threefold increase in global mean organism size and
an ∼35% increase in sinking carbon flux.

mixotrophy | plankton | size | trophic transfer | biological pump

Marine ecosystems provide essential nutrition to more than
half the world’s population via fisheries (1) and mediate

global cycles of climatically important elements including carbon
(2). Current models of marine biogeochemical cycles assume that
the plankton can be clearly divided into two mutually exclusive
guilds: the autotrophic phytoplankton and the heterotrophic
zooplankton. According to this view, phytoplankton are respon-
sible for all photosynthetic carbon fixation, ultimately controlled
by the supply and consumption of inorganic nutrients.
There is clear evidence that such a strict dichotomy between

producers and consumers does not reflect the true nature of
marine microbial communities. Autotrophic and heterotrophic
traits are not mutually exclusive, and a large and increasing
number of plankton taxa have been shown to simultaneously ex-
ploit both inorganic resources and living prey (3). These mixo-
trophic plankton, found throughout the eukaryotic tree of life
(4), and particularly in the 2- to 200-μm size range (5–7), can
sustain photosynthesis even when chronically outcompeted for
the most-limiting inorganic nutrient, in clear contrast to the way
we typically describe and model marine systems (8).
Although mixotrophy is known to be common throughout the

global ocean (6, 7), its contribution to net community production
is difficult to quantify, and its integrated impact on global bio-
geochemical cycles remains unknown. Numerical simulations pro-
vide a platform to address these questions, but to date, no global
ocean models have resolved this important lifestyle. Here, we
examine the global role of mixotrophy in a numerical “thought
experiment,” comparing two simulations of the marine plankton
food web in the global ocean (9) that differ only in their repre-
sentation of trophic strategy (Fig. 1). The traditional “two-guild”
model encapsulates the default view of the marine ecosystem, with
each of the 10 simulated size classes divided into separate phyto-
plankton and zooplankton populations. In the alternative “mixo-
trophy”model, this unrealistically strict distinction is not made, and
each size class contains just one population that is capable of both
inorganic resource uptake and predation, dependent on resource
availability. A detailed model description can be found in the
Supporting Information, Tables S1 and S2, and ref. 9.

Despite the removal of a distinction that is central to all current
global-scale ecosystem and biogeochemistry simulations (9–12), the
emergent community structure shown in Fig. 1B allows the mixo-
trophy model to reliably reproduce observed, global distributions of
chlorophyll a, primary production and nutrients (Figs. S1 and S2).
At specific time-series sites where in situ empirical data are avail-
able (Fig. S3), the two simulations show only minor differences in
terms of their fidelity to observed seasonal cycles of chlorophyll a
and limiting nutrients, whereas the mixotrophic model is better able
to reproduce the concentrations of nonlimiting nutrients, which are
often overestimated by the two-guild model.
Although the two model configurations make no prior assump-

tions with regard to the balance of autotrophic and heterotrophic
nutrition in each size class, both model communities show a clear
and credible (7, 9, 13) trophic structure, with a general shift from
autotrophy to heterotrophy with increasing organism size and tro-
phic level (Fig. 1 A and B). In each case, the smallest plankton are
too small to ingest prey, whereas the largest plankton have very low
affinities for inorganic nutrients. Alongside these similarities, there
are also important differences, the most obvious being the strong
disconnect between the first and second trophic levels seen in the
two-guild model. With a strict dichotomy between phytoplankton
and zooplankton, photosynthesis is restricted to the base of the food
web, as shown in Fig. 1C. The flux of energy and biomass up the
food chain decreases at each trophic level because the energetic
demands of consumers can only be met by the catabolic respiration
of ingested biomass. In the mixotrophic model, consumers can
dramatically increase their apparent trophic transfer efficiency by
using photosynthesis to compensate for respiratory losses. [An al-
ternative mechanism not included in the model is the harvesting of
light energy to decrease the need for catabolic respiration (14).]
Either mechanism allows greater transfer of energy and bio-

mass across each trophic level, which ultimately supports greater

Significance

Marine plankton commonly combine the autotrophic use of
light and inorganic resources with the heterotrophic ingestion
of prey. These mixotrophs blur the strict boundary between
producers and consumers and allow energy and biomass to
enter the food web across multiple trophic levels. Incorporating
this flexibility into a global simulation of the surface ocean food
web reveals that mixotrophy enhances the transfer of biomass to
larger organisms at higher trophic levels, which in turn increases
the efficiency of oceanic carbon storage through the production
of larger, faster-sinking, and carbon-enriched organic detritus.
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biomass among larger size classes further up the food chain (15).
Fig. 2A shows that the total global biomass distribution is shifted
toward larger size classes in the mixotrophy model, with an ap-
proximately threefold increase in global geometric mean plankton
diameter (from 17 to 46 μm). Noting that both models neglect a
range of other mechanisms that may also support photosynthetic
growth among larger plankton (16), the inclusion of mixotrophy
allows the model community to support much higher global values
of primary production and chlorophyll a biomass in the 20- to 200-μm
microplankton size range (Fig. 2B). This shift in community
structure brings the mixotrophic model into closer agreement
with empirical estimates derived from a synthesis of in situ and
satellite observations (17, 18).
The shift toward larger plankton is ultimately driven by an in-

creased competitive ability of mixotrophs relative to phytoplankton
or zooplankton specialists. In general, the nutrient affinity
of plankton decreases with increasing organism size (19), and in
the two-guild paradigm, highly efficient uptake by the smallest

phytoplankton leaves insufficient nutrients to support photosyn-
thesis in the larger groups. In the mixotrophy model, photosyn-
thesis is supported among larger size classes because mixotrophs
can exploit both inorganic nutrient resources and prey. Specifi-
cally, analytic solutions to a highly simplified version of the eco-
logical model (Methods) show that the ability of mixotrophs to
ingest prey not only provides an additional source of the nutrients
required to support photosynthesis, but also provides an addi-
tional source of carbon as a supplement to photosynthesis. This
double benefit decreases their dependence on inorganic nutrients
and allows mixotrophs to survive at nutrient concentrations that
would be unable to support specialist phytoplankton of equivalent
size (Methods and Eq. 4). The fact that this advantage is derived
by eating smaller competitors (20) has the complementary ef-
fect of decreasing the biomass of smaller groups (Fig. 2A),
further shifting the community mean toward larger sizes.
The flexible use of both inorganic and prey resources by mix-

otrophs is highlighted in Fig. 3, which shows the balance of

Fig. 1. Emergent global mean community structure in the two-guild (A) and mixotrophy (B) models. Circular nodes represent global carbon biomass (surface
area proportional to the annual mean), and black links represent global carbon fluxes (thickness proportional to the square root of the annual mean, with all
fluxes directed upwards). The horizontal position of the nodes denotes plankton size, whereas the vertical position denotes trophic level (T). For each
population, T is calculated as 1 plus the average trophic level of each prey item, weighted by the contribution of each prey to the total carbon intake, in-
cluding photosynthesis (T is calculated sequentially from small to large; Methods). Colors represent the balance of autotrophic and heterotrophic carbon
assimilation in each population (Inset, color scale). (C) Representation of the total annual carbon flux across each trophic level in the two-guild (blue) and
mixotrophy (red) models. The fluxes were calculated for each value of T by summing all fluxes beginning at a lower level and ending at a higher level. Solid
lines represent the total flux, whereas dotted lines represent only the photosynthetic flux.

Fig. 2. (A) Total annual mean size distribution of carbon biomass in the two-guild (blue) and mixotrophy (red) models. (B) Global size-fractionated annual
mean chlorophyll a biomass and annual primary production from the two-guild (blue) and mixotrophy (red) models in comparison with empirical estimates
(black). Empirical estimates were derived from a synthesis of in situ and satellite observations (17, 18).
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35

organisms (as described in Fig. 2) compared to maximum nutrient uptake rates which 739

results in a bend in Fig. C2b.740

741

Figure C1. Affinities for light (a), nutrients (b) and food (c), maximum uptake rates of 742

light (d), nutrient (e) and food (f), and respiration rate (g) as a function of cell size. 743

Open squares represent data points (sources are mentioned below) whereas solid lines 744

represent affinities given by Eqs. (3-5) for the parameters given in Table 1. The 745

shaded regions are derived from simulations with random parameters within the 746
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