Using allometry to model copepod-mediated carbon flux – how well do we estimate key rates and variables?

A test case from the NASA EXPORTS expedition

Karen Stamieszkin, *Virginia Institute of Marine Science*

Philipp Brun, *Centre for Ocean Life - DTU Aqua (currently: Swiss Federal Institute for Forest, Snow and Landscape Research)*

Amy Maas, *Bermuda Institute of Ocean Sciences*

Deborah K. Steinberg, *Virginia Institute of Marine Science*
Biological carbon pump

Steinberg & Landry 2017
Biological carbon pump

Passive flux (Sinking fecal pellets)
Biological carbon pump

Active flux (diel and seasonal vertical migration)

Steinberg & Landry 2017
OUTLINE

1. The biological carbon pump
2. EXPORTS: a field campaign to quantify the biological carbon pump
3. Modeling three flux pathways for copepods: passive flux, active DVM flux, active seasonal migration flux
4. Results from a size-based model, applied in the North Atlantic Ocean
5. Zero in on one copepod species (*Neocalanus cristatus*) to compare field measurements to estimates of key variables from size-based modeling
6. Conclusions
Zooplankton-mediated carbon export is important, but difficult and expensive to measure, e.g.
We can also model copepod-mediated carbon flux.

Passive flux:

Size fits the bill because...

Particle size → sinking rate (Stokes Law)
• Fitness optimization model for diel vertical migration behavior:
 • Trade-off between feeding at surface, and predation
 • Size impacts swimming efficiency, feeding rate, predation, metabolism
Diapause and size are linked
There are several different diapause strategies

Active flux: seasonal migration

Brun et al. 2019

Calanus finmarchicus

Calanus species that use diapause in the North Atlantic: *C. finmarchicus*, *C. hyperboreus*, *C. glacialis*
RESULTS!

Fecal pellet flux: 1960-2014

Active DVM flux:
More Results!

Diapause flux:

Distribution of *Calanus finmarchicus*

Changes in flux are being driven by changes in *Calanus* species biomass

Pershing & Stamieszkin, 2019
Meanwhile, in the North Pacific...

Range of *Neocalanus cristatus*

Census of Marine Life, Seward Line

Note the red!
Measuring rates to estimate export pathways

Fecal pellet production experiments:

MOCNESS tows for abundance and water column distribution:

Respiration experiments:
Active respiratory flux

Measured respiration by migrating *N. cristatus*:

5.0 mgC m\(^{-2}\) d\(^{-1}\)

Modeled respiration by migrating *N. cristatus*:

0.4 mgC m\(^{-2}\) d\(^{-1}\)

~MLD = 33 m
Passive fecal pellet flux

Measured fecal pellet carbon production *N. cristatus* in upper 100 m:
- Feeding only at night: 3.3 mgC m\(^{-2}\) d\(^{-1}\)
- Feeding day and night: 4.7 mgC m\(^{-2}\) d\(^{-1}\)

Modeled fecal pellet carbon flux from *N. cristatus* in upper 100 m:
- 1.4 mgC m\(^{-2}\) d\(^{-1}\)
 \(\approx\) 3.3 mgC m\(^{-2}\) d\(^{-1}\)
Neocalanus cristatus (individuals m$^{-3}$)

- Day: ~MLD = 33 m
- Night: ~MLD = 33 m

ADCP, OSP, August 2019

~MLD = 33 m
Nonlinear effects of body size and optical attenuation on Diel Vertical Migration by zooplankton

Mark D. Ohman, Jean-Baptiste Romagnan

~50-100 m (amplitude) 68.6 m (amplitude)

Optical environment matters

Ohman & Romagnan 2016
Measurement-to-model comparison

<table>
<thead>
<tr>
<th></th>
<th>Field measurement</th>
<th>Model estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory flux</td>
<td>5.0 mgC m⁻² d⁻¹</td>
<td>0.4 mgC m⁻² d⁻¹</td>
</tr>
<tr>
<td>FPC prod. vs. flux</td>
<td>3.3 mgC m⁻² d⁻¹</td>
<td>1.4 mgC m⁻² d⁻¹</td>
</tr>
<tr>
<td>FPC prod. vs. flux</td>
<td>4.7 mgC m⁻² d⁻¹</td>
<td>3.3 mgC m⁻² d⁻¹</td>
</tr>
<tr>
<td>DVM amplitude</td>
<td>~ 50-100 m</td>
<td>68.6 m</td>
</tr>
</tbody>
</table>

FYI: Thorium-derived POC flux: 36 mgC m⁻² d⁻¹
(Roca-Martí, Buesseler)
CONCLUSIONS!

Modeling needs field work and field work needs modeling.

Does size suffice?

What about non-copepod zooplankton...?