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As oceanographers, we are interested in processes
that span many orders of magnitude in space and time

Varieties of
Oceanographic Experience

The ocean can be investigated as a hydrodynamical
phenomenon as well as explored geographically.

Henry Stommel
15 FEBRUARY 1963 SCIENCE, VOL. 139



But velocities of interest only span a few orders of
magnitude
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How velocity scales with size is a fundamental
aspect of organismal biology

IA general basis for quarter-power scaling in animals
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In this talk, we'll apply ideas from the metabolic theory of
ecology to marine ecosystems
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Goal/motivation
To understand mixing across seemingly diverse systems



Rationale Primary producers reflect the integrated

result of nutrient mixing & transport
river flow
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Approach Measure ecosystem metabolism — the sum of
metabolic processes of resident organisms

dissolved oxygen >

Measurements organic C

decreasing Increasing
thru time thru time
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Consider an estuary...

Withysurtace area A
and mean depth H
By definition volume V = AH



Within this estuary...

there are n organisms
€ach with individual
metabolism P;

Conservation of mass requires
P = Zn P,‘ = I’RP,‘)



Total productivity is the specitic productivity times size

thedensity (or abundance)
gforganismsis [ =n/V,

Conservation of mass requires
P = zn P,' = I’)<P,‘>

Total Productivity: P = EV



To investigate metabolism/size scaling, we compiled 134
published estimates of ecosystem metabolism
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Location Geometry Gross Primary Production
Lat. Lon: Depth Area Volume Benthic Pelagic Specific Total
°N °E m log1o m? log1o m> gCm 2d! logip g C d™1
Arhus Bugt 56.093 101191 12 ¢ 8.50 [1] 9.58 [1] 0.34 [2] 8.03 ¢
Aabenraa Fjord 55.024 9.504 23 [3] 7.49 [4] 8.86 ¢ 0.84 [2] 7.42 ¢
ACE Basin (Big Bay Creek) 32.494 -80.324 1.3 [5] 3.50 [5] 3.61 ¢ 3.57 [5] 4.05 ¢
ACE Basin (St. Pierre) 32.523 -80.357 1.8 [5] 4.30 [5] 4.56 ¢ 3.46 [5] 4.84 ¢
Alewife Cove 41.312 -72.100 0.8 [6] 5.26 [6] 5.18 ¢ 0.51 [7] 0.44 [7] 0.95 [7] 5.23 ¢
Apalachicola Bay (Bottom) 29.786 -84.875 1.8 [5] 7.20 [5] 7.46 ¢ 0.89 [5] 7.15 ¢
Apalachicola Bay (Surface) 29.786 -84.875 1.8 [5] 7.20 [5] 7.46 c 0.81 [5] 7.11 ¢
Augustenborg Fjord 54.945 9.831 b5.1c¢ 7.14 [1] 7.85 [1] 0.51 [2] 6.84 ¢
Baltic Sea 58.000 20.000 60 [8] 11.57 [8, 9] 13.35 ¢ 0.01 [7] 0.44 [7] 0.38 [8, 9] 11.15 ¢
Bissel Cove 41.548  -71.432 0.2 [6] 3.82 [6] 3.22 ¢ 2.09 [7] 0.15 [7] 2.25 [7] 4.17 ¢
Bojorquez Lagoon 21.126 -86.758 1.7 [10] 6.39 [10] 6.62 c 7.91 [10, 11] 7.29 ¢
Boston Harbor 42.338 -70.985 5.8 [12] 8.03 [12] 8.80 ¢ 0.89 [13, 14] 7.98 ¢
Bothnian Bay 64.000 23.000 41 [15] 10.56 [15] 12.17 ¢ 0.01 [7] 0.07 [7] 0.08 [7] 9.44 ¢
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Result Ecosystem metabolism scales nonlinearly

with ecosystem size
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Recall from log laws that a slope not equal to 1 in log
space indicates a nonlinear (allometric) relationship
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P log P
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v \ log V y=mx+b

scaling exponent = slope

Here, we might say “P scales with V to the 3/4ths”
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Result An estuary that is 1000 times bigger is not
necessarily 1000 times as productive

|
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Quarter-power scaling is explained by theoretical
arguments for organismal metabolism

IA general basis for quarter-power scaling in'animals
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Life’s Universal Scaling Laws

Geoffrey B. West and James H. Brown

September 2004  Physics Today

"\ Figure 2. The 3/s-power law

Average mammalian
cell, in culture
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One insight from MTE theory: Ecosystem metabolism
scales as a ratio of biological to physical rates

? is a length scale proportional to the
growth rate /rand independent of
ecosystem size

EfP ~ VY

0
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Another insight: transport time scales differently for

deep and shallow systems

P ~ QD/D+1 (network scaling)

D
TR
P~ | — (transport/growth)

Transport time: Tgr ~ Q

SNhat Q~V ~ L3

T
shallow TR ~ L
3
deep  Tg~ L34
o - _
A E\Baltic Sea
’g Scheldt Estuary
£ 1r - A Afgmxrragansett Bay
I Limfjorden
o> 0t ~ ﬁdﬁl é &Camden Haven
9o A Alewife Cove
A Bissel Cove
-1 I L I
3 12 0 1 Fraction pelagic

log,, A (m?)

|||||||||||||||||||||

primary production

1/D+1)

U~ LO
U~ 112



If the transport time increases nonlinearly with
ecosystem size, then metabolism will vary nonlinearly
across ecosystems, as we observe

———————————

___________

Imagine organic C.is

produced as a.water

parcel travels through
the estuary



If the transport time increases nonlinearly with
ecosystem size, then metabolism will vary nonlinearly
across ecosystems, as we observe
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Twice as much org C is 1gC—--------
produced in a.system
twice as big, if U-doesn’t
change
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If the transport time increases nonlinearly with
ecosystem size, then metabolism will vary nonlinearly
across ecosystems, as we observe

—————————————————————————————————
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___________

for all three “estuaries”
the growth rate)is the
same




Larger estuaries have greater nitrogen loads, but higher
specific loading doesn’t increase specific productivity

12 high specificloading
= (N/A > 150 g Esequivalent/m?/year)
= g low DIN(vading
> 1
S 47 =

12 £ N
S §r =
= N\
> « 1
a gt

4 3 2 -3 2 1 0 1

A log, (m?) N/A log, (g N/m?/day)



One explanation may be the rate at which nutrient
pulses move through an estuary
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Willie Haskell (MBARI) aggregated net primary

production into a variety of biogeographic
p rOVi nces Carbon-based primary productivity modeling

with vertically resolved photoacclimation

T. Westberry,1 M. J. Behrenfeld,! D. A. Siegel,2 and E. Boss®
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An estimate of global primary production in the ocean from
satellite radiometer data

Alan Longhurst, Shubha Sathyendranath', Trevor Platt and Carla Caverhill

Willie Haskell, in prep



As with estuaries, community metabolism scales
nonlinearly with ecosystem size

Oligotrophic (blue)
Mesotrophic (red)
Eutrophic (yellow)

Total basins/Global (green).



Similar scaling exponents emerge, regardless
of how ocean basins are divided up
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To understand this result, consider an isolated
water column...

v; N [3 volume of water column
physical

(4
length .
€ sca?le P’ o d \/I' productivity scaling

f ‘/z critical length scale matching
( -~ 3 growth rate to
‘ U available energy
(¢ = dissipation)

Y<=7Z  growth rate = 1/growth timescale



Next, imagine that this water column is the only source
of upwelling in a region of the ocean that is otherwise
unproductive

The productivity of the region is
the sum of the individual
water columns

/>7‘0T :,.ZF" :“/;'




This theoretical ocean can only have increased
productivity with lateral spreading coupled to continued
upwelling

Without lateral spreading,

“~_A { vertical motions simply mix
.-Q, ' down existing organic N
-t A\ with the upward movement of

; inorganic N



The relative horizontal diffusivity of upwelled nitrogen
scales with dissipation and the horizontal distance, s

Lds?/de oc '35

Progress in Oceanography 70 (2006) 113-125
Turbulent dispersion in the ocean

Chris Garrett *

Atmospheric Diffusion shown on Distance-Neighbour

By Lewis F. Richardson.

(Communicated by Sir Gilbert Walker, F.R.S.—Received November 7, 1925.)



Thus, for the appropriate physical regimes, we can
expect both vertical mixing and lateral transport to scale
with dissipation
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JOURNAL OF PHYSICAL'OCEANOGRAPHY

Interpreting Energy and Tracer Spectra of Upper-Ocean Turbulence
in the Submesoscale Range (1-200 km)

JORN CALLIES
MIT/WHOI Joint Program in Oceanography, Cambridge/Woods Hole, Massachusetts

RAFFAELE FERRARI

Massachusetts Institute of Technology, Cambridge, Massachusetts



ICBST total community metabolism scales with the same
ratio of timescales found in MTE theory




What can we do with the observation that
estuaries and ocean basins scale similarly with
regard to primary production?
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What are some possible applications of these ideas?
(1) estimating role of lost habitats

Historical Ecology of a Central California Estuary: 150 Years of
Habitat Change

Eric VAN DYKE* and KERSTIN WASSON



What are some possible applications of these ideas?
(2) constraining current budgets

REVIEW

doi:10.1038/nature12857

The changing carbon cycle

of the coastal ocean

James E. Bauer', Wei-Jun Cai?, Peter A. Raymond?, Thomas S. Bianchi’, Charles S. Hopkinson® & Pierre A. G. Regnier®
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What are some possible applications of these ideas?
(3) interpreting other spatial patterns

Annual Review of Marine Science
Biogeochemical Controls oceANs
on Coastal Hypoxia Declining oxygen-in the global ocean

and coastal-waters
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What are some possible applications of these ideas?
(4) predicting future states

Progress in Oceanography 136 (2015) 60-70

Continued increases in Arctic Ocean primary production

Kevin R. Arrigo ™, Gert L. van Dijken
Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
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Fig. 2. Changes in the amount of open water area in the Arctic Ocean between 1998
and 2012 based on three different metrics (Ssummer maximum open water area,
mean open water area between 1 May and 31 September, and annual mean open
water area).



What are some possible applications of these ideas?
(5) parameterizing sub-grid scale processes in GOMs
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In summary

Ecosystem metabolism scales nonlinearly with size
(related to changes in transport time driven primarily by depth)

metabolic scaling theory

CICER olfole[Ne\IWVAIEWIREWIIEN . “1may provide insights into

estuarine and ocean physics

Community metabolism scales nonlinearly with size
(related to changes in transporttime that scale with dissipation?)

Ocean

Nick Nidzieko * University of California Santa Barbara * ucsbcoastlab.org * @ucsboceanrobots






