Hadal trenches hot spots for organic carbon cycling in the deep ocean

Ronnie N Glud

University of Southern Denmark Department of Biology – Nordcee

Tokyo University for Marine Science and Technology

71% of Earth is covered by ocean

The deep sea cover >60% of Earth

Benthic mineralization; a key component of element cycling and redox conditions on Earth

On the short timescale the sea bed act as a source of CO_2 and nutrients, but on geologic time scale it acts as a sink for C & nutrients.

The O₂ consumption of the sea bed represent a robust proxy for the total mineralization of organic material in sediments

In situ measurements of benthic O₂ uptake

The global database and large scale gradients

Surface primary production and deep sea mineralization rates

Wenzhoefer and Glud (2002)

The seascape; slopes, seamounts & hadal trenches (6-11 km)

27 hadal trenches, covering an area the size of Australia

(extreme pressure, endemism, depocenters)

Hadal trenches; hot spots for deposition & turn-over of organic C ?

* Depth integrated 0-10 cm

Glud et al 2013 Wenzhöfer et al 2016

Japan Trench, Tohoku-Oki earthquake 2011

Ca 0.2 km³ of sediment and 1 Tg Org C was estimated to have been re-deposited to the trench axis

Kioka et al 2019

Marine snow and pressure effects

192019 K511092019

Stieff et al in prog

Small scale heterogeneity at the sediment surface; Case Sagami Bay I

Characteristic patch size in the deep sea < 2.1 cm

BSUM

Glud et al 2005; Middelboe et al 2006

Microscale variation in deep sea sediments (case Sagmi Trough)

45.00 40.00

35.00 0.00

5.00

0.00 5.000

5000 5.000

R

-0.0050

-0.00450

-0.004000

-0.00350 -0.00300 -0.00250 -0.00200 -0.001500

18-3 464

000500 0.004500

-0.05400 -0.000506 -0.005000

0.002500 -0.002500 -0.001500 -16-3

684

Microscale variation in deep sea sediments

Aggregate ca 2 mm in diameter

Oxygen (% air saturation)

75

62.5 50

25

12.5

HADES-ERC (2016 - 2021) Sediment diagenesis and microbiology of hadal trenches

Objective 1: Development of 3 autonomous in situ instruments for hadal exploration and pressure chambers for laboratory investigations

Objective 2: Exploration and quantification of biogeochemical function of hadal trenches (carbon and nitrogen cycles)

Objective 3: Exploration of microbial communities, biogeography and viral controls in hadal trench sediments.

Benthic mineralization in the Kermadec & Atacama trenches I

Benthic mineralization in the Kermadec & Atacama trenches II

Benthic mineralization in the Kermadec & Atacama trenches II

CB summer Workshop 2019

O₂ consumption in hadal sediments versus surface production

Estimated surface production mmol C m⁻² d^{-1*}

Annual average based on one decade of remote sensing data (Wenzhoefer & Glud 2002)

Benthic diagenesis and organic carbon availability

In situ measurements of anaerobic diagenesis

N₂ production in hadal sediments (Kermadec, Atacama, Izu-Bonin)

Sulfate reduction in hadal sediments (Atacama) ($SO_4^{2-} + Org C \longrightarrow CO_2 + H_2S$)

5CB summer Workshop 2019 Sulfate reduction (nmol cm⁻³ d⁻¹)

Key messages & current research focus

- Hadal trenches are deep sea hot spots for deposition & mineralization of organic material
- 2) Hadal trenches exhibit high temporal and spatial variability
- 3) Rate measurements require innovative technical solutions

<u>Questions;</u>

- 1) What are the sources, nature and pathways of organic material supply sustaining elevated biological activity in hadal sediments?
- 2) What are the degradation pathways/efficiency and who are the microbial key players ? (Biogeography & anerobes)
- 3) What is the role of virus, protozoan and meiofauna in shaping hadal microbial communities and for hadal biogeochemical function?

Thanks to the very many collaborators, students and technicians.

and the funding agencies – most importantly:

Atacama Team Marts 2018

European Research Council European Union Danish National Research Fund Danish National Science Research Council The villum Foundation

