The fate of sediment storehouses of ancient methane in a warming Arctic Ocean

Katy Sparrow Florida State University ksparrow@fsu.edu

OCB Summer Workshop June 26, 2019

Outline

Introduction

-Methane sources and sinks in the Arctic Ocean -Arctic Ocean methane-climate feedback

• State of the science on:

-Methane hydrates and subsea permafrost in arctic sediment

-Role of microbes in methane production and consumption

-Evidence and outlook on the Arctic Ocean methane-climate feedback

Arctic Ocean methane dynamics

Arctic Ocean methane sources

Ruppel and Kessler, 2017

Arctic Ocean methane sinks

Ruppel and Kessler, 2017

Arctic Ocean methane-climate feedback

Uncertainties in this feedback loop

Tempering Arctic Armageddon c

"These findings of CH_4 emissions from the Arctic sea floor add to our understanding of the atmospheric CH_4 budget, but <u>they do not</u> show that Arctic warming has produced a positive feedback in radiative forcing by causing these emissions to increase recently. <u>A newly discovered CH_4 source is not</u> <u>necessarily a changing source</u>, much less a source that is changing in response to Arctic warming."

-Comment by Petrenko et al. (2010) in Science

Hydrate reservoir and its role today

9

Subsea permafrost has been thermally degrading throughout the Holocene

Extent of subsea permafrost is *not* to the shelf edge

Subsea PF is only found in a limited band of this shelf, in waters <25 m deep

An image of a seep doesn't tell the whole story

Methane removal processes are strong in 100-150 m deep waters

How prevalent is *in situ*-produced methane in shelf waters?

Are ancient sources of methane being emitted from the Arctic Ocean to the atmosphere?

Study area: Alaskan Beaufort Sea

- Cruise in late Aug. early Sept. 2015
- Water depth of stations ranged from 2 – 40 m
- Natural abundance ¹⁴C study

¹⁴C was used to fingerprint the sources of dissolved methane

Samples were collected from 30,000 L SW for each ¹⁴C-methane sample

Sparrow and Kessler, 2017

300 L of gas was extracted from the water and compressed into a 2 L cylinder.

Sparrow and Kessler, 2017

"Decoupling" of surface and deep waters observed within the shallow shelf waters

Station	Water depth (m)	Distance offshore (km)	Sample type	Ancient C-sourced CH ₄ fraction, f _s	Atmospheric-sourced CH ₄ fraction, f _a	In situ produced CH ₄ fraction, f _i
1	2	3	Lagoon	0.18 ± 0.06	0.47 ± 0.18	0.35 ± 0.25
2	3	2	Lagoon	0.50 ± 0.04	0.23 ± 0.12	0.27 ± 0.17
3	14	12	Surface	0.26 ± 0.06	0.37 ± 0.18	0.37 ± 0.24
			Near-seafloor	0.60 ± 0.04	0.18 ± 0.10	0.22 ± 0.13
4	15	10	Surface	0.39 ± 0.05	0.29 ± 0.15	0.33 ± 0.20
			Near-seafloor	0.45 ± 0.05	0.25 ± 0.14	0.30 ± 0.18
5	13	18	Surface	0.42 ± 0.05	0.27 ± 0.14	0.31 ± 0.19
			Near-seafloor	0.58 ± 0.04	0.19 ± 0.10	0.23 ± 0.14
6	19	27	Surface	0.53 ± 0.04	0.21 ± 0.12	0.26 ± 0.16
			Near-seafloor	0.83 ± 0.02	0.07 ± 0.04	0.10 ± 0.06
7	28	48	Surface	0.10 ± 0.03	0.72 ± 0.10	0.18 ± 0.13
·			Near-seafloor	0.86 ± 0.02	0.06 ± 0.04	0.08 ± 0.05
8	38	69	Surface	0.07 ± 0.03	0.79 ± 0.07	0.14 ± 0.10
			Near-seafloor	0.61 ± 0.03	0.17 ± 0.10	0.22 ± 0.13

Table 1. Calculated fractions of ancient and modern C-sourced CH₄ in each sample.

Sparrow et al., 2018

Modern sources of methane dominate in surface waters where depth ≥ 30 m

- Ancient sources are contributing to the dissolved methane pool
- Surface water methane in very shallow waters (<20 m) had significant ancient contributions (25-50%)
- In waters ≥30 m, surface water methane had very little ancient contributions (5-10%)
- Study proves existence of the Arctic Ocean methane-climate feedback, however, it remains undetectable in atmospheric methane data

Thanks!

Katy Sparrow

Postdoctoral Fellow Florida State University

ksparrow@fsu.edu

Funding: The National Science Foundation (PLR-1417149), the Alfred P. Sloan Foundation (Sloan Research Fellowship), and the Department of Energy (DE-FE0028980); all awards to John Kessler (University of Rochester).

