Temperate seagrass bed metabolism and carbon sequestration

Amelie Berger, Peter Berg, Karen McGlathery, Lillian Aoki, Matthew Oreska, Marie Lise Delgard

acb4rk@virginia.edu

VCR loss due to pandemic wasting disease and "Great Storm" of 1933

Slime mold wasting disease

Landscape-scale restoration

Landscape-scale restoration

http://web.vims.edu/bio/sav/

Long-term seagrass study

scale die-off

Aquatic eddy covariance technique

Photo: AWI Sea Ice Physics group

Aquatic eddy covariance technique

Aquatic eddy covariance technique

Highly dynamic, but overall balanced seagrass metabolism

Berger et al. (in review)

Long-term record of seagrass metabolism

Highly dynamic, but overall balanced seagrass metabolism

Berger et al. (in review)

Annual carbon budget

Restoration reinstates C storage in sediments

- Within 12 years, C burial within range of natural systems
- ~half seagrass C; half algal C produced in situ

Greiner et al. 2013, Greiner et al. 2016, Oreska et al. 2017a, b

Restoration reinstates C sequestration in plant biomass

Disturbance caused a shift in trophic status

Disturbance caused a shift in trophic status

Disturbance caused a shift in trophic status

Seagrass loss affects C storage

Landscape-scale variation affects C loss

Link to exposure to temperature stress

Limitation by low CO_2 or high O_2 ?

Berg et al. (2019) L&O

No limitation by low CO₂ or high O₂

Berg et al. (2019) L&O

Conclusions

- Restoration reinstates C storage and sequestration
- Sediment C stocks are vulnerable to shoot losses from temperature stress
- Seagrass loss and recovery causes shifts in trophic status, but the meadow is metabolically balanced overall
 → most C retention = in sediment
- Meadows are resilient at the landscape scale
- No stimulation of photosynthesis at high CO₂ concentrations

Dieback and C loss is patchy at plot scale

