Ocean Carbon & Biogeochemistry

Studying marine ecosystems and biogeochemical cycles in the face of environmental change

June 26, 2019

Andrea Fassbender, Jessica Cross, & Sensational Session Speakers

- 1. Pelagic calcite precipitation
- 2. Calcite dissolution & sedimentation
- 3. Neritic calcite precipitation
- 4. Ocean CO_2 loss caused by calcification
- 5. Carbonate rock weathering
- 6. Subduction and decarbonation
- 7. Silicate rock weathering
- 8. Volcanic emissions

ELSEVIER

Frontiers

The role of the global carbonate cycle in the regulation and evolution of the Earth system

Ridgwell & Zeebe, Earth & Planetary Sci. Lett., 2005

- 1. Pelagic calcite precipitation
- 2. Calcite dissolution & sedimentation
- 3. Neritic calcite precipitation
- 4. Ocean CO_2 loss caused by calcification
- 5. Carbonate rock weathering
- 6. Subduction and decarbonation
- 7. Silicate rock weathering
- 8. Volcanic emissions

Open questions in the field:

- What drives calcification?
- How does CaCO₃ influence carbon export?
- What processes do paleo records reflect?

ELSEVIER

Frontiers

The role of the global carbonate cycle in the regulation and evolution of the Earth system

Ridgwell & Zeebe, Earth & Planetary Sci. Lett., 2005

Carbonate Chemistry

Ridgwell & Zeebe, 2005

14

 $pH = -log_{10}[H^+]$

Carbonate Mineral Saturation States

GLODAPv2_2019 data near Ocean Station Papa figure after Kawahata et al., 2019

Wikipedia

0.7 % (0.25 g)

Quantities in relation to 1 kg or 1 litre of sea

..1 % (0.39 g

Seasonal Cycle Changes in Ocean Carbonate Chemistry

^cO₂d Month

Rodgers et al., GBC, 2008 Egelston et al., GBC, 2010 Cai et al., Nat. Geo., 2011 Jokiel, Bull. Mar. Sci., 2011... Shaw et al., Global Change Bio., 2013 Shultz & Riebesell, Mar. Biol, 2013 Jury et al., Water, 2013 Hauck & Völker, GRL, 2015 McNeil & Sasse, Nature, 2016 Hagens & Middelburg, GCA, 2016 LETTERS
https://doi.org/10.1038/s41558-017-0057-x

Strengthening seasonal marine CO₂ variations due to increasing atmospheric CO₂

Peter Landschützer[©]^{1*}, Nicolas Gruber², Dorothee C. El Bakker³, Irene Stemmler¹ and Katharina D. Six¹

Landschützer et al., Nat. Clim. Change, 2018

Implications for Ocean Acidification

Ŧ

 ${}^{\mathsf{A}}_{\mathsf{A}}$

Asymmetries discussed in:

- Pacella et al., PNAS 2018
- Fassbender et al., GBC, 2018

Kwiatkowski and Orr, Nat. Clim. Change, 2018

How Important is Seawater Chemistry in Calcification?

$Ca^{2+} + HCO_3 - \leftrightarrow H^+ + CaCO_3$

Ca²⁺ + **CO₃²⁻ ↔** CaCO₃

ICES Journal of Marine Science

Food for Thought

The Omega myth: what really drives lower calcification rates in an acidifying ocean

Tyler Cyronak^{1*}, Kai G. Schulz², and Paul L. Jokiel³

International Council for the Exploration of the Sea

Cyronak et al., ICES J of Mar. Sci., 2015

Substrate-to-Inhibitor Ratio (SIR) = $\frac{[HCO_3^-]}{[H^+]}$

Reconsidering the role of carbonate ion concentration in calcification by marine organisms Biogeosciences

L. T. Bach

GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany

Fassbender et al., GRL, 2016

Bach, Biogeosciences, 2015

Lab Metrics vs. Real World Mechanisms

@AGUPUBLICATIONS

Geophysical Research Letters

RESEARCH LETTER 10.1002/2016GL068860 Consideration of coastal carbonate chemistry in understanding biological calcification

Key Points: • Alternative indicators of biological Andrea J. Fassbender¹, Christopher L. Sabine¹, and Kirsten M. Feifel²

Fassbender et al., GRL, 2016

- Undersaturation and low [CO₃2-] are constrained to the high latitudes.
- Declines in SIR-driven calcification would be expected globally.

Reconsidering the role of carbonate ion concentration in calcification by marine organisms Biogeosciences

L. T. Bach

5

GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany

Warm Water Coral Reefs

ReefBase Global Database

Weifu Guo (WHOI)

Are we there yet? Predicting coral calcification response to ocean acidification: From microscale mechanisms to macroscale responses

George Waldbusser (OSU)

Understanding the complex controls on biocalcification: A closer look at SIR and saturation state

Photos: Steve Ringman / The Seattle Times

Arctic Hunter crew members handle crab pot in Bering Sea

Nisbet family's Goose Point Oyster Co. in Willapa Bay

Balch 2018, after Geisen et al., 2002

Lennart Bach (IMAS Hobart)

Carbonate chemistry control on coccolithophore calcification: New findings and future directions

Modeling Coccolithophores

Kristin Krumhardt (NCAR)

The multifaceted response of coccolithophores to increasing CO₂: Recent observations and modeling

Carbon Cycle Feedbacks

Bernard Boudreau

The role of calcification in carbonate compensation

PERSPECTIVE https://doi.org/10.1038/s41561-018-0259-5

The role of calcification in carbonate compensation

Bernard P. Boudreau ^{1*}, Jack J. Middelburg ² and Yiming Luo^{3*}

Boudreau et al., Nat. Geosci., 2018

Ocean Carbon & Biogeochemistry

Studying marine ecosystems and biogeochemical cycles in the face of environmental change

2019 OCB Summer Workshop

Calcification and the Carbon Cycle

 Consideration of ecosystem function and interactions will be required to improve our understanding of coccolithophore calcification at a global scale.

• Calcifiers have the capacity to alter ocean alkalinity rapidly (e.g., decades) and impose long-term changes in the marine carbonate cycle.

