# Impacts of Freshwater Discharge Patterns on the Carbon Cycle in Microtidal Estuaries

Iris C. Anderson, Mark J. Brush, Virginia Institute of Marine Science, College of William and Mary Jennifer W. Stanhope, US Fish and Wildlife Joseph R. Crosswell, CSIRO, AU Net Ecosystem Metabolism, which is likely to play an important role in regulating  $FCO_2$  is often not measured.



# Potential drivers of CO<sub>2</sub> fluxes in estuaries

- Hydrology
  - FW discharge, FW age, residence time, mixing
- Temperature
- Allochthonous inputs of carbon and nutrients
  - From marshes DIC vs. DOC
  - From industrial/urban sources waste water treatment plants
  - Forested systems humics
  - Groundwater and subterranean estuaries
- Autochthonous inputs of carbon and nutrients
  - Net autotrophic systems uptake DIC/pCO2; produce TOC; burial
  - Net heterotrophic systems mineralization of both autochthonous and allochthonous TOC
- Alkalinity production sulfate and nitrate reduction

# We focused on identifying mechanisms responsible for observed fluxes of CO<sub>2</sub> in two mid-Atlantic estuaries. We asked the following:

In the York River VA (YRE) and New River NC estuaries (NRE):

- How do air/sea CO<sub>2</sub> exchanges and net ecosystem metabolism vary temporally and spatially during years with different precipitation patterns?
- How does FW age influence net ecosystem metabolism and air/sea CO<sub>2</sub> exchanges?
- What are the direct vs. indirect regulators of CO<sub>2</sub> exchanges in the YRE?
- How do measured CO<sub>2</sub> fluxes in the YRE and NRE compare to other observed and modelled fluxes in estuaries along the Atlantic Coast of the US?



# Comparison of the York and New River estuaries

|                                                                 | YRE    | NRE    |
|-----------------------------------------------------------------|--------|--------|
| Watershed Area, x10 <sup>6</sup> m <sup>2</sup>                 | 6,588  | 1,024  |
| Estuary Area, x10 <sup>6</sup> m <sup>2</sup>                   | 159    | 79     |
| Watershed:Estuarine Area                                        | 41.5   | 13.0   |
| Estuary Volume, x10 <sup>6</sup> m <sup>3</sup>                 | 809    | 143    |
| Mean Depth, m                                                   | 5.1    | 1.8    |
| % Area < 2 m                                                    | 38%    | 56%    |
| Mean Discharge, x10 <sup>6</sup> m <sup>3</sup> d <sup>-1</sup> | 3.8    | 0.28   |
| Discharge:Volume, d <sup>-1</sup>                               | 0.0048 | 0.0020 |
| Mean Flushing Time, d                                           | 67.8   | 67.4   |
| % Natural Vegetation                                            | 74.7%  | 69.3%  |
| % Agriculture                                                   | 17.4%  | 14.0%  |
| % Developed                                                     | 6.9%   | 15.5%  |

#### Patterns of mean annual FW discharge and flushing time differ for the YRE and NRE



#### Net ecosystem metabolism was measured by the open water method

- Bimonthly dataflow cruises conducted at dawn, dusk, and dawn in the YRE (2018) and in the NRE (2013 14; 2014 2015).
- Water pumped to YSI 6600, CDOM sensor, and showerhead equilibrator.
- DO data distance weighted, averaged for each box, and interpolated over 24 h..
- Gas exchanges calculated (solubility coefficient, Weiss; Schmidt number, Wanninkhof, 1992; gas transfer parameterization, Jiang et al, 2008.
- Daily NEM calculated using average depth for each box and corrected for air/sea exchange.





#### CO<sub>2</sub> Fluxes varied with FW discharge

- In YRE highest CO<sub>2</sub> emissions from June - October with higher than average FW discharge. In Feb and March there was net uptake of CO<sub>2</sub>.
- In NRE (2013-14) with lower than average FW discharge net emissions mainly at head of the estuary with net uptake or balance in other boxes.
- In NRE (2014-15) with slightly higher than average FW discharge net emissions in most boxes during May and September with net or zero uptake during the rest of the year.



#### NEM shifted from net heterotrophy to net autotrophy depending on FW discharge

- In Feb and March the YRE was net autotrophic due to low discharge and cold temperatures. From June – November with high FW discharge most of the estuary was net heterotrophic.
- NEM in the NRE (2013 -14), with lower than average discharge, displayed no clear trends.
- In 2014 15 the NRE with slightly greater than average FW discharge was mainly net autotrophic.



#### CO<sub>2</sub> Fluxes were highest at short FW Ages

• In all sites CO<sub>2</sub> fluxes decreased with increasing FW Age.

 At a FW age of approximately 20 – 25 d net fluxes approached zero.



#### Net trophic status differed in the YRE and NRE and shifted with FW Age

- YRE shifted from net heterotrophic to autotrophic with increased FW age.
  - NEM in the NRE was weakly related to FW age but tended to shift from net autotrophic to heterotrophic or balance with increasing age.



#### The direction of CO<sub>2</sub> exchange varied with NEM

• Effluxes of CO<sub>2</sub> when net heterotrophic; uptake when net autotrophic

#### Other drivers that regulate CO<sub>2</sub> fluxes



• In the YRE CO<sub>2</sub> fluxes strongly related to both DOC and DIN concentrations, highest at the heads of both the YRE and NRE and decreased linearly down estuary

• In the YRE and NRE chl-*a* was highest up estuary, weakly related to NEM but unrelated to CO<sub>2</sub> fluxes.

#### Structural equation models distinguished direct vs. indirect drivers of CO<sub>2</sub> fluxes in the YRE

Grey arrows represent non-significant pathways; black and red indicate significant positive and negative relationships. The correlation coefficient and size of each arrow corresponds to the relative strength of the relationship.



#### What sources of C support CO<sub>2</sub> evasion from YRE and NRE?

- DOC and DIC derived from riverine marshes
  - Estuarine DIC in excess of the C fixed plus DOC respired (Raymond et al, 2000)
  - Neubauer and Anderson (2003) determined that riverine marshes could supply approx. 47% of the excess DIC production in the YRE; DOC export negligible.
- Internally produced CO<sub>2</sub>
  - VanDam et al (2018) demonstrated that in the NRE internal production of CO<sub>2</sub> more important than river derived DIC/CO<sub>2</sub>

| lateral C export (moles C m <sup>-2</sup> y <sup>-1</sup> ) from marsh systems |                  |                             |  |  |
|--------------------------------------------------------------------------------|------------------|-----------------------------|--|--|
| 16.3                                                                           | York R Estuary   | Neubauer and Anderson, 2003 |  |  |
| 9.3 – 20.6                                                                     | SC rivers        | Neitch, 2000                |  |  |
| 24 – 30                                                                        | Georgia rivers   | Cai et al, 1999             |  |  |
| 17                                                                             | Taskinas Cr, YRE | Knobloch et al (in prep)    |  |  |
| $\sim$                                                                         |                  |                             |  |  |

## A York River Comparison; slightly different conditions and interpretations

Raymond et al, (2000); 7/96 – 12/97

- Flushing time: 47.3 d
- Highest pCO<sub>2</sub> in summer and fall when residence time longest; lowest pCO<sub>2</sub> in winter and spring – low temperature, spring bloom, high discharge
- Highest heterotrophy head of estuary
- NEM: 8.3 moles C m<sup>-2</sup> y<sup>-1</sup>
- FCO<sub>2</sub>: 6.3 moles C m<sup>-2</sup> y<sup>-1</sup>
- Net heterotrophy main driver of CO<sub>2</sub> evasion and DIC export

Anderson et al; 2/18 – 11/18

- Flushing time: 32.4 d
- Highest pCO<sub>2</sub> in June and August when residence time shortest; lowest pCO<sub>2</sub> in Feb and March – low temperature, spring bloom, low discharge
- Highest heterotrophy head of estuary
- NEM: 8.4 moles C m<sup>-2</sup> y<sup>-1</sup>
- FCO<sub>2</sub>: 8.1 moles C m<sup>-2</sup> y<sup>-1\*</sup>
- Net heterotrophy a driver but modulated by FW age

\*Laruelle model estimated 8.1 moles C m<sup>-2</sup> y<sup>-1</sup>

# How does FCO<sub>2</sub> vary from N to S in E. Coast estuaries; what are the drivers?

| Estuaries            | FCO <sub>2</sub> (mmol m <sup>-2</sup> y <sup>-1</sup> ) | Drivers                  | <b>Data source</b>    |
|----------------------|----------------------------------------------------------|--------------------------|-----------------------|
| Cocheco              | 3.7                                                      | High nutrients, blooms,  | Hunt et al. 2011      |
| Bellalmy             | 4.6                                                      | residence time, variable |                       |
| Oyster estuaries, NH | 4.5                                                      | discharge                |                       |
| Delaware Bay         | $2.4 \pm 4.8$                                            | Upper - temperature      | Joessef et al, 2015   |
|                      |                                                          | Lower – NEM, mixing      |                       |
| YRE (2018)           | 8.1                                                      | Very high FW             | Anderson et al        |
|                      | 1.                                                       | discharge; NEM           |                       |
| YRE (1996-97)        | 6.3                                                      | Net heterotrophy;        | Raymond et al, 2000   |
|                      | 3                                                        | allochthonous inputs     |                       |
| NRE (2013-14)        | 1.8                                                      | low FW discharge         | Anderson et al;       |
| NRE (2014 – 2015)    | 6.6                                                      | mid FW discharge         | Crosswell et al, 2017 |
| NRE (2014 – 2016)    | 5.7 - 6.1                                                | mid FW discharge         | VanDam et al, 2018    |
| Neuse (2009-10)      | 4.7                                                      | FW discharge,NEM         | Crosswell et al, 2012 |
| Neuse (2014-16)      | 2.8-6.4                                                  | allochthonous inputs;    | VanDam et al, 2018    |
| Altamaha, GE         | 25.3                                                     | High FW discharge        | Jiang et al, 2008     |
| Sapelo GE            | 10.5                                                     | Marsh inputs DIC         |                       |
| Doboy Sound GE       | 10.7                                                     | Marsh inputs DIC         |                       |
| Satilla GE           | 42.5                                                     |                          | Cai and Wang, 1998    |

#### How do observed vs. modelled estimates of FCO<sub>2</sub> and NEM in the mid-Atlantic region compare? (Laruelle et al, 2017)

| Observed (molC m <sup>-2</sup> y <sup>-1</sup> )           |            |                                |  |  |  |
|------------------------------------------------------------|------------|--------------------------------|--|--|--|
| NEM                                                        | FCO2       | Site                           |  |  |  |
| -8.4                                                       | 8.1        | YRE                            |  |  |  |
| -4.5<br>1.8                                                | 1.8<br>6.6 | NRE (2013-14)<br>NRE (2014-15) |  |  |  |
| Modelled (Laruelle using CGEM)                             |            |                                |  |  |  |
| -7.4                                                       | 11.1       | Mid-Atlantic                   |  |  |  |
| Calculated FCO <sub>2</sub> based on Laruelle's Regression |            |                                |  |  |  |
|                                                            | 11.3       | YRE                            |  |  |  |
| BSUR                                                       | 8.8<br>4.8 | NRE (2013-14)<br>NRE (2014-15) |  |  |  |
| OC Y                                                       |            |                                |  |  |  |

## Take home messages regarding regulation of CO<sub>2</sub> fluxes in estuaries

- Freshwater discharge transporting nutrients,  $pCO_2$ , DIC and DOC is the major driver controlling NEM, which in turn determines the magnitude and direction of  $FCO_2$ .
- The interannual variability in observed fluxes of CO<sub>2</sub> is likely due to differences in FW discharge. Extreme weather events are especially difficult to capture.
- Freshwater age determines the spatial variability in NEM and CO<sub>2</sub> fluxes.
- DIC derived from riverine marshes is likely responsible for the excess DIC and net heterotrophy inferred in many estuaries; DOC from marshes plays a lesser role.
- Transformations of carbon are spatially and temporally highly variable and difficult to simulate in models.

### Thanks to all those that helped us:

The Anderson, Brush, and Paerl labs, our students and technicians and especially to:

Hunter Walker, Bryce Van Dam, Michelle Woods, Derek Detweiler, Sam Fortin, Ken Czapla, Stephanie Peart

and to our funding agencies: NSF Biological Oceanography and DOD - SERDP



