

PLANKTON, AEROSOL, CLOUD, OCEAN ECOSYSTEM (PACE)

MISSION UPDATE

Ivona Cetinić (slides by Jeremy Werdell and PACE team) NASA GSFC/USRA **Extend** key systematic **ocean** biological, ecological, & biogeochemical climate data records, as well as **cloud** & **aerosol climate data records** **EF** Make **new global measurements of ocean color** that are essential for understanding the global carbon cycle & ocean ecosystem responses to a changing climate Collect global observations of aerosol & cloud properties, focusing on reducing the largest uncertainties in climate & radiative forcing models of the Earth system

Level 1 required (~threshold) products

Water-leaving reflectance

Chlorophyll-a

Phytoplankton absorption

NAP+CDOM absorption

Particulate backscattering

Diffuse attenuation

Fluorescence line height

Aerosol optical thickness

Aerosol fine mode fraction

Liquid / ice cloud optical thickness

liquid / ice cloud effective radius

Cloud layer detection ($\tau < 0.3$)

Cloud top pressure ($\tau > 3$)

Shortwave radiation effect

Uncertainty requirements accompany all L1 req'd data products (i.e., we need quantitative validation of all of these products)

Improve our understanding of how **aerosols influence ocean ecosystems & biogeochemical cycles** and how **ocean biological & photochemical processes affect the atmosphere**

Extend key systematic **ocean** biological, ecological, & biogeochemical climate data records, as well as **cloud** & **aerosol climate data records** **EF** Make **new global measurements of ocean color** that are essential for understanding the global carbon cycle & ocean ecosystem responses to a changing climate Collect global observations of aerosol & cloud properties, focusing on reducing the largest uncertainties in climate & radiative forcing models of the Earth system

Incomplete list of advanced (~baseline) products

Carbon stocks & fluxes

Phytoplankton pigments

Phytoplankton physiology

Community structure (PFTs)

Productivity

PAR, light attenuation, water quality

Liquid / ice cloud water path

Polarimeter-specific products

Applied sciences-specific products

Land data products (TBD)

Your very favorite data product that

I forgot to list (so plz don't ask)

Improve our understanding of how **aerosols influence ocean ecosystems & biogeochemical cycles** and how **ocean biological & photochemical processes affect the atmosphere**

PACE INCLUDES:

A UV-SWIR IMAGING SPECTROMETER 2 MULTI-ANGLE UV-NIR POLARIMETERS

COST, SCHEDULEGACIFESPAN

•\$805M C Store TO-COST •CATES OF A CLASS C •~ PEOLE SCLASS C

Orbit

•675.5 KM ALTITUDE

•POLAR, ASCENDING ORBIT

•SUN SYNCHRONOUS

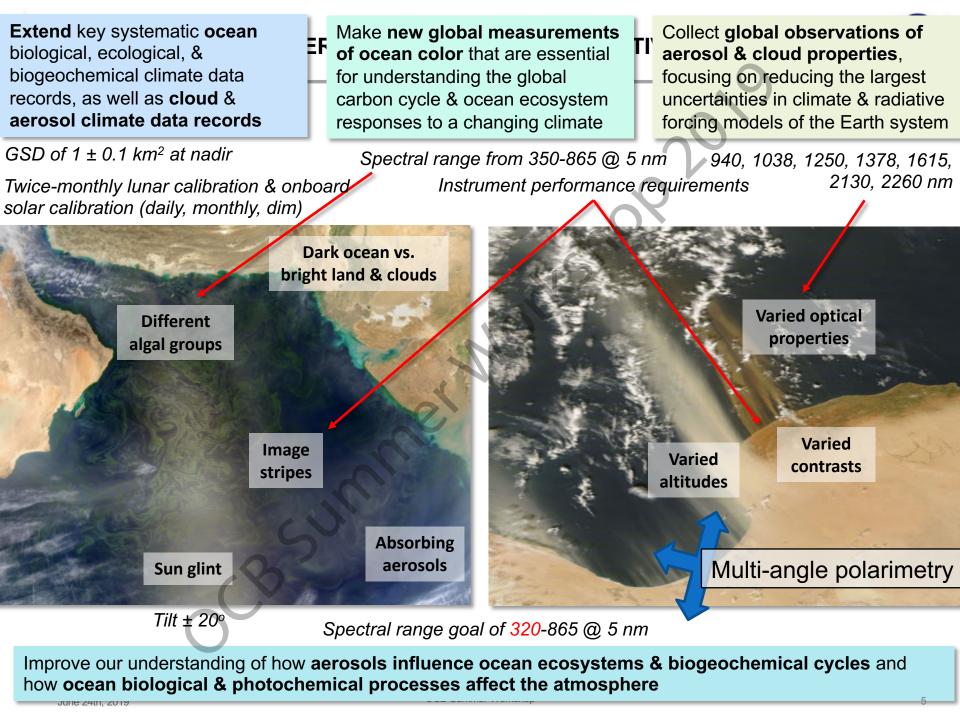
•980INCLINATION

•13:00 LOCAL EQUATORIAL CROSSING

AND WILL PRODUCE DATA FOR STUDIES OF:

OCEAN BIOLOGY, ECOLOGY, AND BIOGEOCHEMISTRY

ATMOSPHERIC AEROSOL PARTICLES

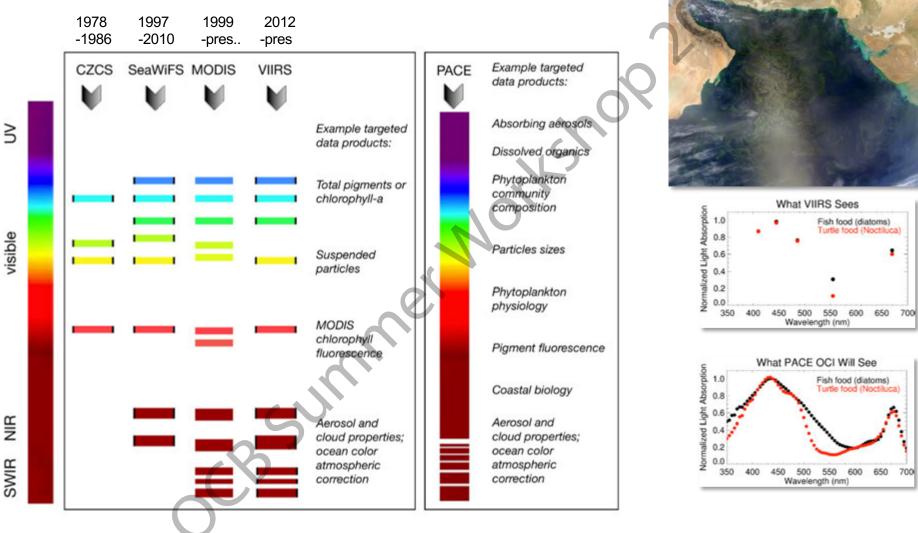

CLOUDS

June 24th, 2019

OCB Summer Workshop

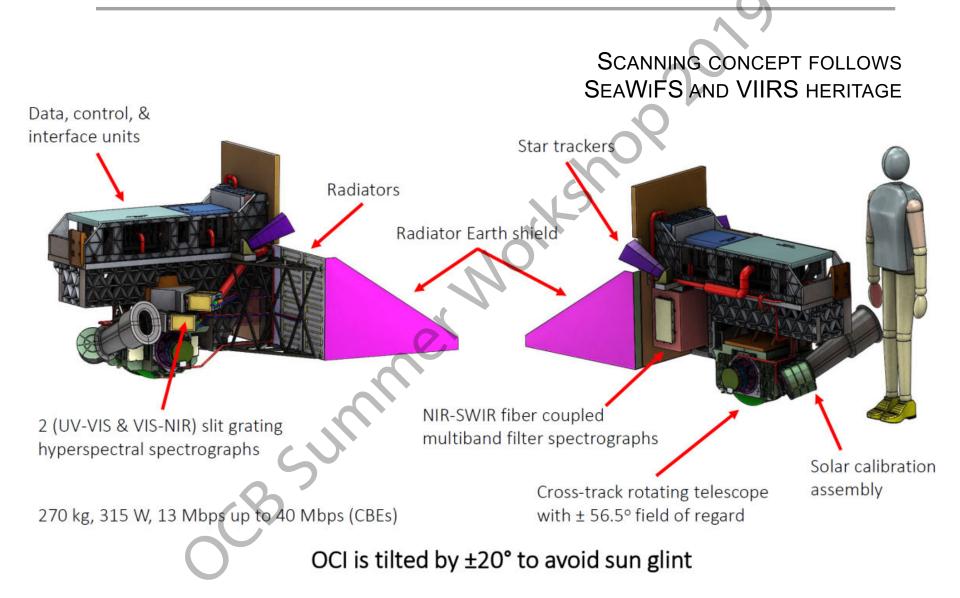
PACE

LAND



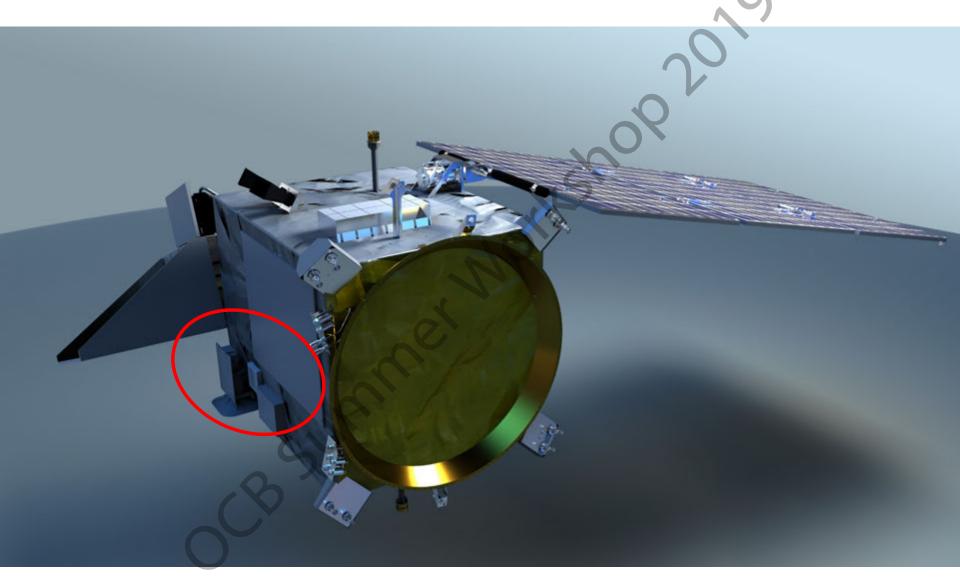
Sum

MOVING FROM MULTI-SPECTRAL RADIOMETRY TO SPECTROSCOPY

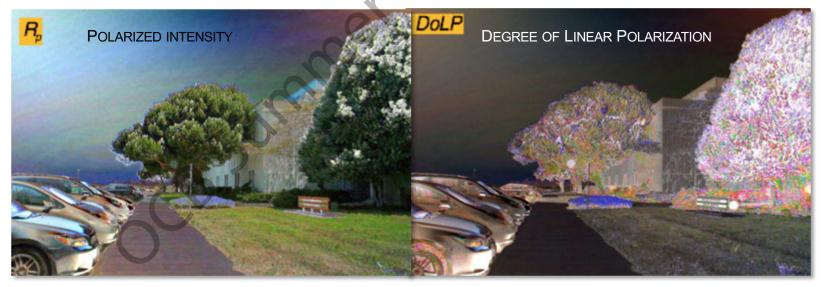

Photos by: Joaquim Goes, LDEO; Linda Armbrecht, abc.com.au

June 24th, 2019

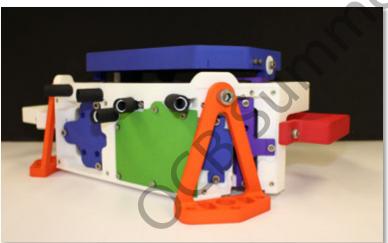
OCEAN COLOR INSTRUMENT (OCI)



MULTI-ANGLE POLARIMETRY



MULTI-ANGLE POLARIMETRY ADDS DIMENSIONS OF INFORMATION



SPEXONE AND HARP2 ARE CONTRIBUTED

	HARP-2	SPEXone				
UV-NIR range	440, 550, 670, 870 nm	Continuous from 385-770 nm in 5 nm steps				
SWIR range	None	None				
Polarized bands	All	Continuous from 385-770 nm in 15-45 nm steps				
Number of viewing angles [degrees]	10 for 440, 550, 870 nm; 60 for 670 nm [spaced over 114°]	5 [-57°, -20°, 0°, 20°, 57°]				
Swath width	±47º [1556 km at nadir]	±4.5° [106 km at nadir]				
Global coverage	2 days	30+ days				
Ground pixel	3 km	2.5 km				
Heritage	AirHARP, Cubesat	AirSPEX				

PROOF OF CONCEPT FOR ATMOSPHERIC CORRECTION, AEROSOL, & CLOUD RETRIEVALS

SPECTRO-POLARIMETER FOR PLANETARY EXPLORATION (SPEXONE)

- EXCELLENT FOR AEROSOL CHARACTERIZATION
- ADDRESSES AEROSOL CLIMATE OBJECTIVES BEYOND THOSE REQUIRED OF OCI

HYPER ANGULAR RAINBOW POLARIMETER (HARP2)

- EXCELLENT FOR CLOUD DROPLET SIZE AND ICE PARTICLE SHAPE/ROUGHNESS RETRIEVALS
- PROVIDES CLOUD CAPABILITIES BEYOND THOSE REQUIRED OF OCI
- WIDE SWATH ~MATCHES OCI, OFFERING POTENTIALLY IMPROVED ATMOSPHERIC CORRECTION

OCI + SPEXONE + HARP2

- FAR GREATER INFORMATION CONTENT THAN ANY CURRENT (& PLANNED) INSTRUMENT SUITE FOR OCEAN COLOR, AEROSOL,
 & CLOUD OBSERVATIONS
- NEW DATA PRODUCTS: OCEAN COLOR FROM MULTI-ANGLE POLARIMETRY, WIND SPEED, ETC.

اللهون

PHASE B – PRELIMINARY DESIGN & TECHNOLOGY COMPLETION (PASSED PDR, JUNE 2019)

PHASE C – FINAL DESIGN & FABRICATION (AUG 2019)

ALL MISSION ELEMENTS MUST PASS CRITICAL DESIGN REVIEWS (CDR) (~DEC 2019)

PRECEDED BY SERIES OF SUB-ELEMENT ENGINEERING PEER REVIEWS (EPRs)

PROJECT & HQ SCIENCE + OBPG SCIENCE DATA PROCESSING:

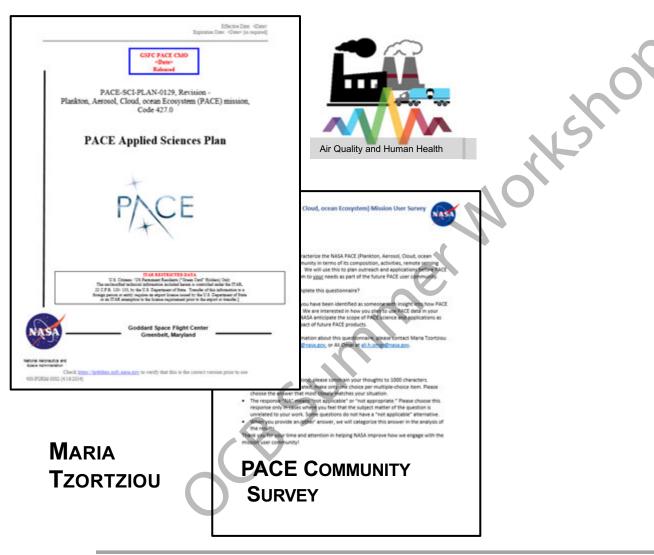
RESPOND TO ELEMENT ISSUES (STUDY, CHARGE/RETREAT, PROVIDE THERAPY)

IMPLEMENT SCIENCE CAPABILITIES (PLANS FOR CAL, VAL, ALGS, PROCESSING, DOCUMENTATION, ETC.)

INTERACT WITH NEWLY FORMED SCIENCE TEAMS

PHASE D – SYSTEM ASSEMBLY, INTEGRATION & TESTING, & LAUNCH

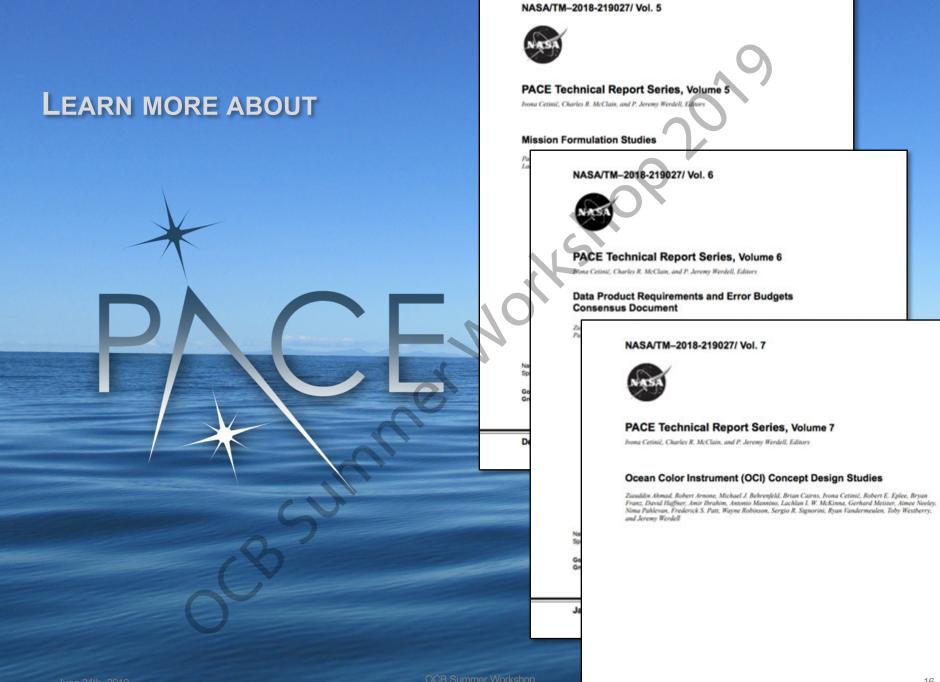
PHASE E - SCIENCE OPERATIONS


CY16	CY17	CY18	CY19	CY20	CY21	CY 2	E Vrz	23	CY24	CY25		CY26
Phase A	A	Phase B		Phase C		Phase D	(m)	I	Phase E		Ρ	hase F

WANT TO PLAY?

MISSION APPLICATIONS PLAN

WANT TO PLAY?


MISSION APPLICATIONS PLAN

PACE SCIENCE AND APPLICATION TEAM

🞯 NSPIRES		
NASA Research Solipitations	Science Mission Directorat NASA Research Announcer PACE Science and Ap	ment
View Solicitations	Solicitation: NNH19ZDA	
Open Closed/Past Selected	Release PACESAT19 NOIs Due	Mar 14, 2019 May 15, 2019
	PACESAT19 Proposals Due	Jul 15, 2019 Create

Paula Bontempi

LEARN MORE ABOUT

https://pace.gsfc.nasa.gov @NASAOcean (Twitter) @NASAOcean (Facebook)

Plankton, Aerosol, Cloud, ocean Ecosystem

HOME ABOUT MISSION + SCIENCE - APPLICATIONS - CAMPAIN'NS NEWS EVENTS GALLERY + OCCUMENTS -

PACE Plankton, Aerosol, Cloud, ocean Ecosystem

nord technologies will provide new insight into Earth's ocean and

These systems impact our everyday lives. How? By regulating climate and making our planet habitable.

PACE's data will help us better understand how the ocean and atmosphere exchange carbon dioxide. In addition, it will reveal how aerosols might fuel phytoplankton growth in the surface ocean. Novel uses of PACE data will benefit our economy and society. For example, it will help identify the extent and duration of harmful algal blooms. PACE will extend and expand NASA's long-term observations of our living planet. By doing so, it will take Earth's pulse in new ways for decades to come.

NASA's long-term chlorophyll record is unparalleled

LATEST NEWS & EVENTS Dutch Aerosol Instrument on NASA Earth

9. 7 7

SEARCH

Ecosystem Satellite Receives Green Light (news) vew -

PACE Science and Applications Team Research Opportunity (news) view +

Webinar 2 - Beyond Blue: Why Ocean Color Really Matters (event) view -

View all news and events #

PACE will show all chlorophyll is not created equal

Why Do We Need PACE?

onal Aeronautics and

Ocean Ecology

Our ocean teems with life and many of its most vital species are invisible to us. Like on land, the ocean has deserts, forests, meadows, and jungles, providing habitats for many forms of life. The types of life in these habitats is determined by microscopic algae that float in our ocean. Known as "phytoplankton," these tiny organisms come in many different shapes, sizes, and colors. The diversity of phytoplankton types determines the roles they

FOR THE FIRST TIME IN ~ 2 DECADES, OUR SCIENCE COMMUNITY WILL HAVE AN OBSERVATORY THAT IT CAN *GROW INTO* ...

UNPRECEDENTED GLOBAL VIEW OF THE OCEAN AND ATMOSPHERE

AND SO MUCH MORE...