

Biogeochemical controls on oxygen depletion across multiple scales in estuaries and the coastal ocean

Jeremy Testa Chesapeake Biological Laboratory Solomons, Maryland

ENTER FOR ENVIRONMENTAL SCIENCE Collaborators: Katja Fennel, Lora Harris, Walter Bo

Approach and Considerations

- **Approach**: Perform a synthesis of oxygen uptake rates and potential replenishment rates across diverse coastal ecosystems, quantify a metric that balances the two controls
- There are a diversity of time scales of oxygen depletion in coastal and marine ecosystems (permanent, seasonal, episodic, diel)
- The degree of oxygen depletion depends on the magnitude of the biogeochemical oxygen consumption rates relative to physical replenishment
- Oxygen consumption is driven by a variety sources, including watershed and wetland C inputs, nutrient-fueled autochthonous organic matter, reduced chemical species

O₂ Depletion Time Scales Vary Substantially Across Systems

⁽Testa and Kemp 2011)

Nitrogen Load and Hypoxic Area

Time scale of hypoxia occurrence (in days)

Time scale of hypoxia occurrence (in days)

 Table 1
 Cross-system comparison of selected estuaries and river-dominated shelves

The characteristics of each system are compiled from the literature sources cited in the footnotes below. For the calculation of the fraction or oxygen consumption oy me semiment, the total oxygen consumption is the sum of water-column consumption integrated over the hypoxic layer and sediment oxygen consumption. The definition of the hypoxia timescale is given in Section 2; for this calculation, we used an initial oxygen concentration of 225 mmol $O_2 m^{-3}$. Abbreviations: N, nitrogen; ND, no data; P, phosphorus.

^aKemp et al. 2005; ^bTesta et al. 2014; ^cQ. Zhang et al. 2015; ^dDu & Shen 2016; ^eSmith & Kemp 1995; ^fBoynton et al. 2018; ^gYin et al. 2004; ^hRabouille et al. 2008; ⁱCai et al. 2004; ^jZhang & Li 2010 (modeled); ^kWulff & Stigebrandt 1989; ¹Carstensen et al. 2014; ^mWulff et al. 2014; ⁿJohansson 2018; ^oNausch et al. 1999; ^pPers & Rahm 2000; ^qNoffke et al. 2016; ^rWelsh & Eller 1991; ^sUS Environ. Prot. Agency 2017; ^tWolfe et al. 1991; ^uGay et al. 2004; ^vJ. Donnell, unpublished data; ^wBricker et al. 2007; ^xLehmann et al. 2009; ^yBelley et al. 2010; ^zHowarth et al. 1996; ^αSaucier & Chasse 2000; ^β Howarth et al. 1996; ^γ Bourgault et al. 2012; ^δ Fennel et al. 2016; ^εNatl. Park Serv. 2017; ^ζK. Fennel, unpublished data; ^ηMurrell et al. 2013; ^θYu et al. 2015; ^κChen et al. 2007; ^λChen et al. 2009; ^μC.-C. Chen, unpublished data; ^ξZhou et al. 2017; ^πCannaby et al. 2015; ^ρ Capet et al. 2013; ^σ Ludwig et al. 2009 (estimated for the Danube, Dnieper, and Dniester); ^φA. Capet, unpublished data; ^χCapet et al. 2016.

The characteristics of each system are compiled from the literature sources cited in the footnotes below. For the calculation of the fraction of oxygen consumption by the sediment water-column consumption integrated over the hypoxic layer and sediment oxygen consumption. The definition of the hypoxic timescale is given in Section 2; for this calculation, 225 mmol $O_2 m^{-3}$. Abbreviations: N, nitrogen; ND, no data; P, phosphorus.

^aKemp et al. 2005; ^bTesta et al. 2014; ^cQ. Zhang et al. 2015; ^dDu & Shen 2016; ^eSmith & Kemp 1995; ^fBoynton et al. 2018; ^gYin et al. 2004; ^hRabouille et al. 2008; ⁱCai et al. 2004; ^jZhang & Li 2010 (modeled); ^kWulff & Stigebrandt 1989; ^lCarstensen et al. 2014; ^mWulff et al. 2014, ⁿJohansson 2018; ^oNausch et al. 1999; ^pPers & Rahm 2000; ^qNoffke et al. 2016; ^rWelsh & Eller 1991; ^sUS Environ. Prot. Agency 2017; ^tWolfe et al. 1991; ^uGay et al. 2004; ^vJ. Donnell, unpublished data; ^wBricker et al. 2007; ^xLehmann et al. 2009; ^yBelley et al. 2010; ^zHowarth et al. 1996; ^αSaucier & Chasse 2000; ^β Howarth et al. 1996; ^γ Bourgault et al. 2012; ^δ Fennel et al. 2016; ^eNatl. Park Serv. 2017; ^ζK. Fennel, unpublished data; ⁿMurrell et al. 2013; ^θYu et al. 2015; ^kChen et al. 2007; ^λChen et al. 2009; ^μC.-C. Chen, unpublished data; ^ξZhou et al. 2017; ^πCannaby et al. 2015; ^ρCapet et al. 2013; ^σLudwig et al. 2009 (estimated for the Danube, Dnieper, and Dniester); ^gA. Capet, unpublished data; ^χCapet et al. 2016.

Fennel & Testa, ARM

on of

For Most Hypoxic Systems, $\gamma < 1$

Rock Creek, MD: A Highly-Eutrophic Creek Managed by

Aaration

Anoxia Upon Experimental Shutdown of Aerators

Date

γ <<1 for Rock Creek, Less Than Predicted

Corsica River Estuary, MD: A Highly-Eutrophic Creek with Diel Cycling Hypoxia

Summary

Great diversity among coastal systems experiencing hypoxia. Same processes at play but relative importance varies.

Even at low rates of oxygen consumption hypoxia can occur if residence time is long or source water is oxygen-poor.

Ratio of hypoxia time scale and residence time $\gamma = \frac{\iota_{hyp}}{\tau_{res}}$ provides a framework for cross-system comparisons τ_{res}

In river-dominated systems hypoxic zone size scales with nutrient load.

Very shallow and productive systems develop hypoxia at the timescale of a few days. These types of systems are likely common in eutrophic systems.

Future increases in temperature should increase τ_{hyp} , but other climatic changes relevant

Thank You

Summer Monthshop 2019