Anthropogenic Fe and N deposition alters the ecosystem and carbon balance of the Southern Indian Ocean

Particulate

Old model Fe scheme (Parekh et al., 2005; Dutkiewicz et al., 2014): 1 unifornly distributed ligand class; dissolved Fe scavenged by organic particles only

New Fe scheme (Pham and Ito, 2018, 2019): 3 spatially vary ligand classes (biologically produced L1, particle remineralized L2, and refractory L3); release of scavenged Fe from organic and inorganic particles

Anh Pham¹ and Taka Ito¹ (1) School of Earth and Atmospheric Sciences, Georgia Institute of Technology

Model experiments

- The model was first spun up under the pre-industrial deposition of N and Fe for 1000 years (Preln run)
- The model then ran under the industrial N and Fe deposition (Ind run) for another 1000 years

Fe deposition (In - Preln) dFe depositon anomaly log10 [mol/m²/s] -14-13

Analyzing the difference in nutrient fields, biological production, and carbon uptake of the Ind run relative to the PreIn run (Ind - PreIn)

Model average dFe concetration anomaly from 0–300m [nM]

0 1 8

Model reproduces major feaalong the GI04 Indian Ocean

Model average PO_4^{3-} concetration anomaly (0-300m)[mmol/m3]

Despite some biases, our model starts capturing some features of the primary production observed by the satellite

Vertically integrated diatom concentration anomaly [mmolC/m2]

-30

N deposition (In - Preln)

Model average NO₂ – concetration anomaly from 0–300m [nM]

Model average SiO₂ concetration anomaly from 0–300m [mmol/m

-1818

decreasing it in the equatorward

Satellite

0.02observation of elevated calcite production

References

Dutkiewicz et al. (2014), Understanding predicted shifts in diazotroph biogeography using resource competition theory, Biogeosciences, 11(19), 5445–5461, doi:10.5194/bg-11-5445-2014

Parekh et al (2005), Decoupling of iron and phosphate in the global ocean, Global Biogeochem. Cy., 19,GB2020, doi:10.1029/2004GB002280, 2005.

Pham and Ito (2018), Formation and maintenance of the GEOTRACES subsurface dissolved-iron maxima in an ocean biogeohcemistry model, Global Biogeochemical Cycles, 32, doi.org/10.1029/2017GB005852

Pham and Ito (2019), Ligand binding strength explains the distribution of iron in the North Atlantic Ocean, Geophys. Res. Lett., GRL59159, doi: 10.1029/2019GL083319

Discussion

• Increased Fe deposition stimulates diatom productivity of the southern Indian Ocean pole-

Diatom production weakens along 40°S due to the P depletion and it is outcompeted by • coccolithophores, which has a lower P demand

These changes in diatom and coccolithophores production weaken the organic pump and • strengthen the carbonate pump, increasing the carbon uptake in the poleward of 40°S and

The simulated enhancement in the coccolithophores production coincides with the satellite

comments and suggestions: anh.pham@eas.gatech.edu