Introduction

Western boundary currents, such as the Gulf Stream, are thought to be hot spots of ocean carbon dioxide uptake. In these regions, the maximum CO₂ flux occurs in wintertime, when in-situ observations are most sparse due to intense weather conditions that challenge sampling from ships. Moreover, the short spatial and temporal scales of variability require dense sampling to resolve the influence of the currents on gas exchange. We show the capability of an Autonomous Surface Vehicle (ASV), called Saildrone, for collecting transformative measurements in the Gulf Stream region during a February 2019 deployment. The Saildrone is a high-endurance (>3 months), fast moving (1-8 knots) ASV that carries a large payload of meteorological and oceanographic sensors. For our deployment, it was equipped with the PMEL-designed ASVCO₂ system, which measures pCO₂ in both the atmosphere and the ocean with climate-quality (2 µatm) accuracy using 2 point calibrations before every measurement. With pCO₂, sea surface temperature, salinity, and near-surface wind measurements; we calculate CO₂ fluxes in the cold, nutrient rich Slope Sea, across the Gulf Stream, and into the warm, nutrient poor Sargasso Sea during active convection. On our planned 30-day mission, Saildrone collected 18 days of pCO₂ data as it completed five crossings of the Gulf Stream before 7 m waves caused a leak in the ASVCO₂ system.

We hypothesize that the ΔpCO₂ in existing climatologies may be biased because of chronic under-sampling in winter, when heat loss drives a strong increase in oceanic CO₂ solubility, and vertical nutrient fluxes stimulate enhanced phytoplankton productivity.

Motivation

The Landschutzer (2013) and Takahashi (2009) climatologies are based on observations from the SOCAT and LDEO databases, respectively, which have sparse wintertime observations. This may lead to a bias in the estimates of ΔpCO₂ and CO₂ flux, especially in under-sampled western boundary current regions like the Gulf Stream.

Comparison to climatology

The average ΔpCO₂ measured during the Saildrone Mission in the Gulf Stream region is -51 µatm and in the subtropical interior is -48 µatm.

Conclusions & future work

- ASVs, such as Saildrone, can be utilized to increase the spatial coverage of pCO₂ observations under intense weather conditions.
- Measurements from the Saildrone Mission show ΔpCO₂ values larger than existing climatological estimates of the Gulf Stream region, suggesting a 38% increase from the February Takahashi (2009) climatology and a 59% increase from that of the Landschutzer (2013) climatology. These findings may lead to an upward revision of the climatological CO₂ fluxes.
- Measurements from the Endeavor cruise show ΔpCO₂ values larger than existing climatological estimates of the subtropical interior, suggesting a 26% increase from the February Takahashi (2009) climatology and a 30% increase from that of the Landschutzer (2013) climatology. The subtropical interior appears to be better represented in the climatological estimates, potentially as a result of a larger number of measurements due to routine BATS cruises.
- The Gulf Stream thermal north wall is offset from the depth-averaged velocity maximum by 40 km. At this location, there are sharp gradients in O₂ % saturation and chlorophyll that are not apparent in hourly oceanic pCO₂ observations.
- During the Saildrone mission, atmospheric pCO₂ varied by 2 µatm, oceanic pCO₂ by 43 µatm and ΔpCO₂ by 46 µatm.
- With the likely recovery of 10-minute pH data, we will be able to resolve sharp gradients such as the thermal north wall. The five crossings of the Gulf Stream will allow us to assess changes in each variable as the Saildrone traveled downstream.
- These observations will enable us to explore the relationship between heat and CO₂ fluxes in the Gulf Stream region.
- Saildrone observations will aid in the understanding of temperature and alkalinity controls on the DIC concentration at the ocean surface.

Saildrone-enabled observations of wintertime oceanic and atmospheric pCO₂ may lead to an upward revision of western boundary current CO₂ uptake.