Direct wintertime pCO₂ observations from the Saildrone Gulf Stream Mission

Sarah E. Nickford, Jaime B. Palter

Contributions and Funding

The 2018 Saildrone Award and the NSF RAPID Award made this research possible, along with important contributions from Kathy Donohue, Andrea Fassbender, Alison Gray, Jacki Long, Stacy Maenner, and Adrianne Sutton who participated in scientific planning, data collection, processing, and analysis advice. Thanks also to Nick Bates, Becky Garley, Yui Takeshita, and Dave Ullman for their help with instrumenting the R/V Endeavor cruise.

Figure 1. Saildrone at the Newport Shipyard for launch event on January 30th, 2019.

Introduction

Western boundary currents, such as the Gulf Stream, are thought to be hot spots of ocean carbon dioxide uptake. In these regions, the maximum CO_2 flux occurs in wintertime, when in-situ observations are most sparse due to intense weather conditions that challenge sampling from ships. Moreover, the short spatial and temporal scales of variability require dense sampling to resolve the influence of the currents on gas exchange. We show the capability of an Autonomous Surface Vehicle (ASV), called Saildrone, for collecting transformative measurements in the Gulf Stream region during a February 2019 deployment. The Saildrone is a highendurance (>3 months), fast moving (1-8 knots) ASV that carries a large payload of meteorological and oceanographic sensors. For our deployment, it was equipped with the PMEL-designed ASVCO2 system, which measures pCO_2 in both the atmosphere and the ocean with climatequality (2 µatm) accuracy using 2-point calibrations before every measurement. With pCO₂, sea surface temperature, salinity, and near-surface wind measurements, we calculate CO₂ fluxes in the cold, nutrient rich Slope Sea, across the Gulf Stream, and into the warm, nutrient poor Sargasso Sea during active convection. On our planned 30-day mission, Saildrone collected 18 days of pCO₂ data as it completed five crossings of the Gulf Stream before 7 m waves caused a leak in the ASVCO2 system.

We hypothesize that the ΔpCO_2 in existing climatologies may be biased because of chronic under-sampling in winter, when heat loss drives a strong increase in oceanic CO₂ solubility, and vertical nutrient fluxes stimulate enhanced phytoplankton productivity.

regions like the Gulf Stream.

Comparison to climatology

Stream region is -51 μ atm and in the subtropical interior is -48 μ atm.

crossing shown in Figure 4. b) same as a) but for the Landschutzer (2013) climatology.

University of Rhode Island – Graduate School of Oceanography

Conclusions & future work

- number of measurements due to routine BATS cruises.

sarah_nickford@uri.edu

ake a picture to see

A crossing of the Gulf Stream E Depth 050 O 20 LSS (hatr 400 8 0 350 atmospher Cross-stream distance (km)

Figure 4. Saildrone's first crossing of the Gulf Stream at 70.5 °W. The top panel shows the alongstream velocity in stream coordinates (Halkin and Rossby, 1985) with the US East Coast on the right and the Sargasso Sea on the left. All variables are plotted versus cross-Gulf Stream distance, where the origin is at the position of the maximum depth-averaged velocity and distances are calculated normal to the velocity vector at that maximum.

The final storm

Saildrone encountered storms about every four days throughout the mission but the intensity and persistence of the final one on 2/26/2019 led to the end of the mission.

Winds reached a roaring 46 kts significant and heigh wave reached 12.6 m

• ASVs, such as Saildrone, can be utilized to increase the spatial coverage of pCO₂ observations under intense weather conditions.

• Measurements from the Saildrone Mission show ΔpCO_2 values larger than existing climatological estimates of the Gulf Stream region, suggesting a **38% increase** from the February Takahashi (2009) climatology and a **59% increase** from that of the Landschutzer (2013) climatology. These findings may lead to an upward revision of the climatological CO_2 fluxes.

Measurements from the Endeavor cruise show ΔpCO_2 values larger than existing climatological estimates of the subtropical interior, suggesting a 26% increase from the February Takahashi (2009) climatology and a 30% increase from that of the Landschutzer (2013) climatology. The subtropical interior appears to be better represented in the climatological estimates, potentially as a result of a larger

The Gulf Stream thermal north wall is offset from the depth-averaged velocity maximum by 40 km. At this location, there are sharp gradients in O_2 % saturation and chlorophyll that are not apparent in hourly oceanic pCO₂ observations.

During the Saildrone mission, atmospheric pCO₂ varied by 22 μ atm, oceanic pCO₂ by 43 μ atm and Δ pCO₂ by 46 μ atm.

With the likely recovery of 10-minute pH data, we will be able to resolve sharp gradients such as the thermal north wall. The five crossings of the Gulf Stream will allow us to assess changes in each variable as the Saildrone traveled downstream. These observations will enable us to explore the relationship between heat and CO_2 fluxes in the Gulf Stream region. Saildrone observations will aid in the understanding of temperature and alkalinity controls on the DIC concentration at the ocean surface.

& jpalter@uri.edu

