The calcification response of coccolithophores to elevated ocean alkalinity
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CO, drawdown

To keep within 2°C of pre-industrial global Convers[clnn of COp to qlssowed HCOg- by
temperatures, we are going to needto start Ca-Mg silicate weathering

actively removing CO, from the atmosphere,
in addition to reducing greenhouse gas
emissions.

CO» from sedimentary organic C weathering

One way of doing this would be to elevate the
alkalinity of the oceans. This shift of the

carbonate system would enhance CO CaCoO

drawdown into the surface ocean and-store Burial E L/ CO5 and CHy from

carbon as HCO,-. Enhancing alkalinity sa Metamorohism &

could be achieved by two different ways: Org C D Di P .
eep Diagenesis

1. Acclerating the natural weathering process, Burial P J

which alrea c?/ draws down 1 Gt Cl/year.
2. Directly adding alkaline materials to the
ocean.

A key unknown for these proposed schemes is
how phytoplankton, the basis of life for all
marine ecosystems, will respond. It is
particularly crucial that the response of

calcifying plankton is constrained, because the Subduction
formation of their CaCO; skeletons actually CO2 £ Caco
releases CO,, which could undo net carbon or Lalb.Ug
sequestration through elevated alkalinity. & Organic C
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Treatment

Experimental design

Synthetic Ocean Water (SOW)

Total Alkalinity Which phytoplankton groups?

(Mmol/kg) Coccolithophores are arguably the dominant calcifying plankton in the world's
2400-2600 surface oceans. Emiliania huxleyi and Gephyrocapsa oceanica are the most

SOW + NaHCO,

abundant, bloom-forming species.

3000 What alkalinity levels?

It has been suggested that at point-source sites of alkalinity addition, local

3500 levels of alkalinity could reach up to 4000umol/kg. Once ocean circulation has

distributed this alkalinity through the surface ocean, levels would likely be

4000 ~3000pmol/kg in order to achieve a drawdown of ~10 Gt C/year. It is crucial
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optimum.

that any experimental design accommodates this expected range.

Batch culture experiments using E. huxleyi (strain OA15) and G. oceanica (strain RCC1314) were run in triplicate at each
of the alkalinity treatments summarised in the table to the left. Cultures were allowed to acclimate to alkalinity treatments
for at least 10 generations before results were collected from these experiments.
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E. huxleyi
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Control

= 3000 pumol/kg
A 3500 pmol/kg

¢ 4000 pmol/kg

Days

G. oceanica

;

Control

® 3000 pmol/kg
A 3500 pmol/kg

¢ 4000 pmol/kg
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Still to come...

There are still samples for PIC:POC,
alkalinity and DIC of media, Redfield ratio
for E. hux and G. oceanica, plus SEM
images of G. oceanica which need to be
produced to finish up this experiment.

Future experiments include:

o Exposing E. hux and G. oceanica to
different forms of elevated alkalinity i.e.
by adding Ca(OH), to SOW.

o Exposing different species to the same
alkalinity treatments. C. braarudii has been
acclimated to NaHCO, treatments ready
to see whether high CaCO,/cell and low
culture density species react in the same
way as low CaCOs/cell and high culture
density species such as E. hux and
G.oceanica.

o Lab experiments to constrain the
alkalinity response of planktonic
foraminifera, the next most abundant
group of calcifying plankton after the
coccolithophores.

o Ocean biogeochemical modelling to
constrain the impact of the calcification
reponse of coccolithophores and forams
on a wider scale.
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