

Impacts of atmospheric nitrogen deposition and coastal nitrogen fluxes on oxygen concentrations in Chesapeake Bay **VIRGINIA INSTITUTE OF MARINE SCIENCE** Fei Da¹ (fda@vims.edu), Marjorie A. M. Friedrichs¹, and Pierre St-Laurent¹

¹Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062

- Atmospheric and coastal DIN inputs are as important as ~9% riverine DIN inputs

Results 2: Dry vs. wet years

Table 2 Absolute difference in bottom O_2 (mg L⁻¹) between the three sensitivity experiments and the reference run

WILLIAM & MARY

	Annual	Spring	Summer	Fall	Winter
AtmN	0.09	0.09	0.17	0.09	0.03

Fig. 1 (a) Chesapeake Bay watershed (red square) and its airshed (gray shading); (b) ChesROMS-ECB model domain and transect along the mainstem (red line)

Model experiments: All model simulations were conducted from 2002-2005 (Table 1).

ΔRiverN	0.08	0.08	0.18	0.06	0.01		
CoastalN	0.10	0.12	0.16	0.07	0.05		
Jumbers are computed along the mainstem transect between stations CB3.3C and CB6.2							

(Figure 5a), where hypoxia is the most prevalent.

- Spatially greatest impacts on bottom O_2 (Fig. 5): (1) Atmospheric DIN \rightarrow shallow eastern shoals in mid-Bay, where atmospheric DIN is relatively large (2) Coastal DIN \rightarrow lower Bay (3) Riverine DIN \rightarrow upper Bay and largest tributaries
- Temporal impacts on bottom O_2 (Table 2): (1) in the summer, all three DIN sources are important to hypoxia in the Bay

(2) in the winter, coastal DIN has the greatest impact in most of the Bay

Conclusions

- In Chesapeake Bay, atmospheric DIN deposition has about the same gram for gram impact on hypoxia as riverine loading.
- Continental shelf DIN concentrations have a similar overall

[†]Dry and wet years are based on annual riverine discharge to the Chesapeake Bay

In the mid-Bay DIN is more limiting in dry years than wet years, so atmospheric DIN inputs have a greater impact on primary production and O_2 in dry years (Fig. 3-4)

In the lower Bay DIN is always limiting, but atmospheric impacts are greater in wet years because atmospheric DIN deposition is larger in wet years (Fig. 3-4)

impact on hypoxia as DIN from the atmosphere; both impacts are greatest in summer.

• The greatest impacts of atmospheric DIN deposition and shelf DIN concentrations are farther downstream in wet years compared to dry years (See Da et al. (2018) for more information).

Acknowledgement

This work has been supported by the NASA Interdisciplinary Science Program (NNX14AF93G) and by the National Science Foundation (OCE-1259187). We would also like to thank Kyle Hinson and the Chesapeake Bay Program Watershed Model group for providing the riverine and atmospheric DIN input flies.

References

Da, F., et al., 2018. JGR-Oceans, 123(7), 5004-5025. Feng, Y., et al., 2015. JGR-BGS, 120(8), 1666-1695. Gantt, B., et al., 2015. Geoscientific Model Development, 8, 3733–3746. Grimm, 2017. The Chesapeake Bay Program Final Report. Irby, I. D., et al., 2018 Biogeosciences, 15, 2649-2668. Shenk and Linker, 2013. JAWRA, 49(5), 1025-1041.