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Model tools: This study used the estuarine carbon and 
biogeochemistry model embedded in the Regional Ocean 
Modeling System (ChesROMS-ECB; Fig. 1).

Model experiments: All model simulations were conducted 
from 2002-2005 (Table 1). 
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Motivation and Objective

Quantify the relative impacts of 
direct atmospheric DIN 

deposition and coastal DIN 
inputs on Chesapeake Bay 

hypoxia&

*DIN refers to dissolved inorganic nitrogen: combination of  nitrate (NO3
-) and ammonium (NH4

+)
&Hypoxia: dissolved oxygen (O2) < 2 mg L-1
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Fig. 1 (a) Chesapeake Bay watershed (red square) and its airshed (gray shading); 
(b) ChesROMS-ECB model domain and transect along the mainstem (red line)

#CBP: Chesapeake Bay 
Program
**CMAQ: Community 
Multiscale Air Quality 
Model

Average 2002
Dry†	
   

2003
Wet

2004
Wet

2005  
Normal

Atmospheric DIN inputs  
(G-g N y-1) 8.0 7.7 9.3 7.2 7.9

Riverine DIN inputs  
(G-g N y-1) 91 73 120 88 83

100*Atmospheric/
riverine 8.8% 10.5% 7.7% 8.2% 9.5%

Table 1 Inputs of DIN to the Chesapeake Bay from direct atmospheric deposition 
and riverine loading 

†Dry and wet years are based on annual riverine discharge to the Chesapeake Bay

Results 1: Impacts on O2 in the summer 
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Fig. 2 Four-year (2002-2005) 
averages of increase in O2 along 
the mainstem in the summer 
resulting from decreased nutrient 
inputs: AtmN sensitivity 
experiments (row 1), ∆RiverN 
sensitivity experiments (row 2), and 
CoastalN sensitivity experiments 
(row 3). Dashed lines are four-year 
(2002-2005) averaged summertime 
pycnocline (defined as in Irby et al. 
(2016)). Results are similar but 
opposite for experiments with 
increased nutrient inputs. 

•  The spatial structures of these responses differ slightly:  
the impact of coastal DIN is greater than the atmospheric 
DIN in the lower Bay, and smaller in the upper Bay.

•   Atmospheric and coastal DIN inputs are as important as 
~9% riverine DIN inputs 

Results 2: Dry vs. wet years

•  Magnitude of impacts 
on O2 is similar for 
atmospheric and 
coastal DIN inputs 
(Fig. 2). 

•  Changes in O2 are 
greatest in summer
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Results 3: Spatial variability

•  In the mid-Bay DIN is more limiting in dry years than wet 
years, so atmospheric DIN inputs have a greater impact on 
primary production and O2 in dry years (Fig. 3-4)

•  In the lower Bay DIN is always limiting, but atmospheric 
impacts are greater in wet years because atmospheric DIN 
deposition is larger in wet years (Fig. 3-4)

Fig. 3 Impacts of atmospheric 
and coastal DIN on summer  
bottom O2 along the mainstem 
in the driest year (2002) and 
the wettest year (2003). 

Fig. 4 Schematic showing 
downstream shift of maximum 
impacts in wet years.  
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Fig. 5 (a) Summer bottom O2 (circles 
denote in situ data); Relative impacts 
on bottom O2 due to three sensitivity 
tests in the: (b) summer and (c) winter 
(average of 2002-2005);

Table 2 Absolute difference in bottom O2 (mg L-1) between the three 
sensitivity experiments and the reference run 

Annual Spring Summer Fall Winter

AtmN 0.09 0.09 0.17 0.09 0.03

∆RiverN 0.08 0.08 0.18 0.06 0.01

CoastalN 0.10 0.12 0.16 0.07 0.05
Numbers are computed along the mainstem transect between stations CB3.3C and CB6.2 

(Figure 5a), where hypoxia is the most prevalent.

•  Spatially greatest impacts on bottom O2 (Fig. 5): 
(1) Atmospheric DIN è shallow eastern shoals in mid-Bay, 
where atmospheric DIN is relatively large  
(2) Coastal DIN è lower Bay 
(3) Riverine DIN è upper Bay and largest tributaries

•  Temporal impacts on bottom O2 (Table 2):  
(1) in the summer, all three DIN sources are important to 
hypoxia in the Bay  
(2) in the winter, coastal DIN has the greatest impact in 
most of the Bay

Conclusions
•  In Chesapeake Bay, atmospheric DIN deposition has about 

the same gram for gram impact on hypoxia as riverine 
loading.

•  Continental shelf DIN concentrations have a similar overall 
impact on hypoxia as DIN from the atmosphere; both 
impacts are greatest in summer.

•  The greatest impacts of atmospheric DIN deposition and 
shelf DIN concentrations are farther downstream in wet 
years compared to dry years (See Da et al. (2018) for more 
information).
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Change in bottom O2 due to atmospheric 
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