Glacial Deep Ocean Deoxygenation Driven By Biologically Mediated Air-Sea Disequilibrium

Ellen Cliff¹, Samar Khatiwala¹, Andreas Schmittner² and Juan Muglia²

¹ University of Oxford, UK ² Oregon State University ellen.cliff@earth.ox.ac.uk

Motivation and methods

- World Ocean Atlas 2018 and float observations show widespread O₂ disequilibrium
- The model used Model of Biogeochemistry and Isotopes coupled to Transport Matrix Method driven by UVic ESCM physics¹ - agrees well with these observations

DJF - northern winterJJA - northern summerWOA18 & float data surface O2 saturation:

•

•

0° 60°E 120°E 180°W120°W 60°W 0° 0° 60°E Model preindustrial surface O₂ saturation:

Schematic overview of MOBI - Model of Ocean Biogeochemistry and Isotopes

Perturbation experiments

 Perturbation experiments allow a single variable from LGM conditions to be imposed on the preindustrial state, keeping all other variables fixed at their PIC value, to determine the effect on different components of the O₂ system

PIC conditions with LGM perturbations

- Preformed O₂ (O_{2,pre}) is decomposed into equilibrium (O_{2,eq}) and disequilibrium (O_{2,dis}) components²
- Model is run with full physics and biology, and physics only the difference between the runs gives the biological contribution to equilibrium and disequilibrium O_{2,pre}

 $O_{2,pre} = [O_{2eq,phy} + O_{2,eq,bio}] + [O_{2,dis,phy} + O_{2,dis,bio}]$ > 0 = 0 < 0 < 0 < 0

- Interior O₂ is the sum of preformed O₂ and O₂ removed by consumption of organic matter (O_{2,soft}) (see schematic below)
- Biological contribution to O₂ (O_{2,bio}) is the sum of disequilibrium O_{2,pre} due to biology (O_{2,dis,bio}) and O₂ consumed during organic matter regeneration (O_{2,soft})

Schematic showing components of O₂,bio

Preindustrial and LGM control experiments

Our decomposition method is used to investigate changes in O₂ between model runs of preindustrial control (PIC) and last glacial maximum (LGM) conditions, which are tuned to a wide range of proxy data³

 $\begin{array}{c} 500\\ 400\\ 300\\ 200\\ -100\\ -20$

• Changes in O₂ inventory: LGM minus PIC

• The glacial ocean is deoxygenated relative to the preindustrial ocean

Major factors increasing LGM O ₂	Major factors decreasing LGM O ₂	
Circulation		Iron (Fe)

biological export ↓: less O₂ consumption at depth Sea ice (light limitation) biological productivity ↓ biological disequilibrium O₂↓: less O₂ consumption at depth Temperature O₂ solubility ↑ Sea ice O_2 gas exchange \downarrow : enhances negative physical disequilibrium O_2 gas exchange \downarrow : provents

O₂ gas exchange↓: prevents ventilation of O₂ poor deep waters - enhances biologically mediated disequilibrium Iron (Fe) biological productivity biological disequilibrium

O₂[†]: enhances oxygen depletion in deep ocean

- Lower biological productivity due to sea ice and circulation, and lower temperatures tend to increase O₂ in the glacial ocean
- However this was more than compensated by biologically mediated disequilibrium O₂ enhanced by sea ice and iron fertilisation leading to global deep ocean deoxygenation in the glacial ocean

