

Arctic-COLORS **Coastal Land Ocean Interactions in the Arctic**

A. Mannino¹, M. Friedrichs². P. Hernes³, P. Matrai⁴, J. Salisbury⁵, M. Tzortziou⁶, C. Del Castillo¹

¹NASA Goddard Space Flight Center; ²Virginia Institute of Marine Science; ³University of California Davis; ⁴Bigelow Laboratory; ⁵University of New Hampshire; ⁶City College of New York antonio.mannino@nasa.gov http://arctic-colors.gsfc.nasa.gov

Arctic-COLORS is a proposed NASA Field Campaign project that aims to improve understanding and prediction of land-ocean interactions in the rapidly changing Arctic coastal zone, and assess vulnerability, responses, and feedbacks of coastal ecosystems, communities, and natural resources to current and future pressures.

Why the Coastal Arctic?

- Significant increase in summer SST ast 50 years
- Substantial reduction in sea ice coverage and ice season length.
- Increasing Primary Productivity and changing food web dynamics

Permafrost is thawing

- 1672 Petagrams of organic carbon stored in Arctic permafrost globally (feedbacks to climate)
- Changing flows in Arctic rivers
- Substantial Coastal Erosion
 - 17-20 m/yr in most exposed Beaufort sites
 - 0.3 m/yr in Chukchi Sea sites
- Ocean acidification of Arctic seas
- Extreme biophysical changes • Arctic ecosystems shifting from benthic- to pelagic-dominated Consequences for Arctic wildlife and human populations

Overarching Science Goal

To quantify the coupled biogeochemical-ecological response of the Arctic nearshore system to rapidly changing terrestrial fluxes and ice conditions.

Science Themes

- Effect of land on nearshore Arctic biogeochemistry (rivers, thawing permafrost, coastal erosion)
- Effect of ice on nearshore Arctic biogeochemistry (snow, landfast ice, sea ice)
- Effects of future change (warming land and melting ice) on Ш.

Where? When? What?

WHERE?

From the Yukon Delta to the Mackenzie Delta, from the head of tidal influence to the coastal shelf (pink-shaded coastal region on map)

Why NASA?

- Remote sensing (RS) from satellite and airborne platforms are essential for capturing the spatial and temporal variability of the Arctic coastal study domain (past and present).
- NASA has the satellites, airplanes, airborne sensors and RS data processing and distribution capability to enable Arctic-COLORS.
- The development/parameterization and robustness of models necessary to address the goals of Arctic-COLORS will be accelerated with NASA remote sensing observations.
- Synergies with ABoVE and other NASA field campaign and modeling programs.

Science Team											
Name	Institution	Name	Institution								
Carlos Del Castillo	NASA GSFC	David Kirchman	U. Delaware								
Marjorie Friedrichs	VIMS	Diane Lavoie	Fisheries & Oceans Canada								
Peter Hernes	UC-Davis	Bonnie Light	U. Washington								
Antonio Mannino	NASA GSFC	James McClelland	U. Texas / MSI								
Patricia Matrai	Bigelow	Donald McLennan	CHARS ABOVE								
Joseph Salisbury	UNH	Irina Overeem	U. Colorado								
Maria Tzorziou	CCNY	Chris Polashenski	U.S. Army Corps of Engineers								
Matthew Alkire	U. Washington	Michael Rawlins	U. Massachussetts								
Marcel Babin	U. Laval	Rick Reynolds	Scripps/ UCSD								
Simon Bélanger	UQAR Canada	Michael Steele	U. Washington								
Emmanuel Boss	U. Maine	Dariusz Stramski	Scripps/ UCSD								
Eddy Carmack	Fisheries & Oceans Canada	Robert Striegl	USGS ABAM								
Lee Cooper	UMCES/ CBL	James Syvitski	U. Colorado								
Susanne Craig	Dalhousie University	Suzanne Tank	U. Alberta								
Jerome Fiechter	UC Santa Cruz	Muyin Wang	U. Washington								
Joaquim Goes	Lamont-Doherty	Tom Weingartner	U. Washington								
Peter Griffith	SSAI/ GSFC	Paula Bontempi	NASA HQ								
David Kirchman	U. Delaware										

nearshore Arctic biogeochemistry (seasonal and interannual first, then future scenarios /predictions)

Science Questions

- Effect of land on nearshore Arctic biogeochemistry
- How do freshwater carbon, nutrient, and sediment fluxes to the coastal zone change as a result of:
 - changing riverine and groundwater inputs?
 - passage through estuaries and gradients?
 - coastal erosion and thawing permafrost?
- How do these changing fluxes affect nearshore Arctic biogeochemical and ecological processes?
- How has the relative magnitude of inputs from rivers and coastal erosion changed across the nearshore Arctic seasonally and interannually?
- Effect of ice on nearshore Arctic biogeochemistry
- How does flow alteration/channeling by morphological ice conditions impact terrestrial fluxes into, and attenuation within, the nearshore Arctic?
- How does the coastal snow/ice cover impact nearshore Arctic biogeochemical processes by controlling rates of mixing and by modulating light availability?
- How does the timing of sea ice formation/retreat, duration of sea ice cover and ablation, snow accumulation, and the morphology of the coastal ice zone influence nearshore Arctic biogeochemical and ecological processes?
- III. Effects of future change (warming land and melting ice) on nearshore Arctic biogeochemistry
- On seasonal and interannual timescales, how will changing land (Question 1) and

WHEN?

The proposed timeline for Arctic-COLORS is 2021-2031, (i) to overlap with NASA's ocean color mission PACE, and (ii) to overlap with 3rd phase of NASA's ABoVE program to benefit from ABoVE's results and possible follow-on activities, thus linking processes in the Arctic coastal oceans and terrestrial ecosystems.

WHAT?

Intensive sampling and process experiments will be conducted from river mouths to near-shelf of the Yukon, Mackenzie and a select number of small rivers (Map 1) plus coastal erosion sites. Core process measurements will include: Primary production, assimilation/grazing, community respiration, aggregation/ flocculation, photochemical and bacterial transformation of organic matter. **Complete seasonality: continuous year-round measurements** with floats, buoys, moorings, AUVs, satellites, ... weather and ice permitting. Intensive process studies during key months (plus airborne remote sensing)

Potential Partners (to be explored further):

- Canada (Polar Knowledge, Sentinel North, etc.)
- Other NASA Programs, NSF, NOAA, BOEM, USGS, etc.
- International partners (Pan-Arctic: EU, Japan, Korea, etc.)

REVISED Science Plan submitted Jan. 2018

melting ice (Question 2) impact nearshore Arctic biogeochemical and ecological processes?

On interdecadal timescales, how will changing land (Question 1) and melting ice (Question 2) impact nearshore Arctic biogeochemical and ecological processes?

Survey studies undertaken along and across the continental shelf to (1) Assess spatial heterogeneity across different shelf regions, (2) Determine interactions and teleconnections between the outer shelf and shallow shelf regions occupied during the process studies, (3) Evaluate model simulations across temporal and spatial scales, (4) Permits scaling up using remote sensing observations **Timing:** July-August and September-October

Early March	May-June	July	September	October
• End of winter	• Peak river discharge		• Max open water/min sea ice	• Freeze-up
condition	Ice breakup	• Increasing biological	 Low river discharge 	period
	 Under ice blooms 	& photochemical	• Pre-conditioning of systems pr	ior to winter
		activity	• Peak respiration late Sept-early	y Oct
		-		-

• Diverse approaches proven to be effective in the Arctic for year-round measurements and sampling

 Ice camps, ATVs, sleds (lower river, delta, landfast ice) Small boats and small ships (lower river to nearshore) Medium and large icebreakers (nearshore to outer shelf seas) • Deployable small vessels for shallow-water & near ice work Helicopter-enabled sampling

 Moorings, floats, buoys, gliders and other autonomous vehicles Airborne and satellite remote sensing

Integrative Observational Approach

Science Plan currently in Peer Review

Processes represented by arrows as well as those labeled (permafrost dynamics, coastal erosion, landfast ice, etc.) will be examined at the interface of river estuaries and deltas with the coastal ocean. Larger and thicker arrows and text represent the higher priority processes and biogeochemical state variables.

Notional Observational Program Timeline

coping Study Timeline 2014			2015				2016				2017				20	18				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Town Halls & Presentations																				
Scoping Study Workshops																				
Refine Science Questions & Plan																				
Drafting of Scoping Study Report																				
Posting of Draft Report - 30 days																				
Submission of Report to NASA																				
NASA Posting of Report - 30 days																				Programmatic questions
NASA Review Panel																				& feedback are referred to
Revision of Science Plan																				Dr. Paula Bontempi / NASA HQ
Science Plan Submission to NASA																				e-mail: paula.bontempi@nasa.gov
NASA Review Panel 2nd round														21	-					
SDT Develops Implementation Plan																1	100	2		Tel: 202.358.1508
									1 - 2				100			-				

Scoping study funded by NASA's Ocean Biology and Biogeochemistry (OBB) Program