CO₂ System Dynamics in the Dalton Polynya, East Antarctica

Mar C. Arroyo^{1*,} Elizabeth H. Shadwick¹, Bronte Tilbrook²

¹ Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA

² Commonwealth Scientific and Industrial Research Organisation Oceans and Atmosphere, Hobart, Tasmania, Australia

* Corresponding author: marroyo@vims.edu

Introduction	Seasonal Drivers of TCO ₂	Satellite Observations
The objective of this study was to characterize the CO_2 system dynamics in the Dalton Polynya during the summer season. Observations of underway fCO_2 and discrete water column samples of total dissolved inorganic carbon (TCO ₂) are used to	1. Air-Sea Exchange of CO_2 $40^{(a) OUTGASSING}$ Surface waters were mostly supersaturated	Chlorophyll-a

partition the seasonal drivers of mixed-layer TCO₂ concentrations into physical and biological components. Understanding the current CO₂ system dynamics is necessary to evaluate how the system will respond to future global change.

Figure 1. Underway and discrete CO₂ system observations were made on the RV Aurora Australis between December 2014 and January 2015.

Oceanographic Setting

A total of 81 CTD stations were sampled in the Dalton Polynya for discrete TCO_2 and total alkalinity (TA) concentrations (Figure 2). Samples were collected in 250 mL bottles and fixed with a saturated solution of mercuric chloride before analysis using a SOMMA system (TCO₂) or by potentiometric titration (TA).

Figure 4. Underway measurements as a function of time between 24 Dec 2014 and 09 Jan 2015 of (a) ΔfCO_2 (μ atm), (b) Wind speed (m s⁻¹), (c) F_{CO2} (mmol C m⁻² d⁻¹) where a positive flux indicates a net ocean source of CO_2 . See Figure 1 for color references.

2. Sea Ice Melt and Formation

Figure 7. Mean monthly chlorophyll-a (Chl-a; mg m⁻³) in the Dalton Polynya between 1997 – 2017 (green circles), 2014 – 2015 (black), 2015 – 2016 (red). Error bars represent the standard deviation.

Sea Ice Coverage

Figure 8. Mean monthly sea ice coverage (%) in the Dalton Polynya between 1997 – 2017 (blue circles), 2014 – 2015 (black), 2015 – 2016 (red). Error bars represent the standard deviation.

Figure 2. Map of Dalton Polynya on the Sabrina Coast (115–123°E). Underway ship track (lines) and CTD station (circles) between 24 Dec 2014 and 08 Jan 2015 overlain on a MODIS Terra image from 22 Jan 2015. See figure for color details. Totten Ice Shelf, TIS. Moscow University Ice Shelf MUIS.

Mixed-layer TCO₂ concentrations were depleted relative to depth (200 m) in the Dalton Polynya and less so near the TIS.

Figure 5. Depth profiles of TCO_2 (a) in the Dalton Polynya and (b) near the TIS and $nTCO_2$ (c) in the Dalton Polynya and (d) near the TIS. Mean profiles from each section are bolded.

Salinity-normalized TCO₂ (nTCO₂) profiles revealed the effects of dilution through sea ice melt and concentration through sea ice formation on mixed layer concentrations.

Summary

- The Dalton Polynya was a weak net source of CO_2 to the atmosphere during the period of observations.
- Sea ice melt reduced mixed layer TCO₂ concentrations in the Dalton Polynya, but sea ice formation increased TCO_2 concentrations near the western Totten Ice Shelf.
- Biological productivity reduced mixed-layer TCO₂ concentrations in the Dalton Polynya, resulting in positive NCP.
- Satellite observations of chlorophyll-a and sea ice coverage

Figure 3. Diagram of potential temperature salinity, with (°C) and potential of contours density anomaly (kg m⁻³) and colors for dissolved oxygen (µmol kg⁻¹). The solid line represents the freezing point.

Figure 6. Mean NCP (mmol C m⁻² d⁻¹) for each region. Error bars represent the standard deviation.

during the measured 2014 – 2015 season are in contrast to the long-term average, suggesting large interannual variability plays a role in seasonal productivity in the Dalton Polynya.

