Competition, Trade, and the Economics of Changing Marine Microbial Ecosystems

Jeff Morris University of Alabama in Birmingham

Biogeochemical Models are Our Friends

(Possible) Pitfalls of biogeochemical Modeling

- 1. Interactions are strictly negative: competition/exploitation
- 2. Organisms are modeled as functional groups
- 3. No evolution

Does this ever matter?

Do Positive Interspecies Interactions Matter for Models?

- 1. YES THEY DO (2 examples)
- 2. How evolution creates positive interactions in the plankton
- 3. A look ahead: how we are studying the interplay of species interactions and contemporary phytoplankton evolution

Ocean Acidification vs. Phytoplankton

Calcidiscus leptoporus

Coccolithus pelagicus

98 ppm CO₂

149 ppm CO₂

345 ppm CO2

345 ppm CO₂

920 ppm CO₂

915 ppm CO₂

Langer et al 2006, G3

CO₂ enhances growth rate for cultures of most* small phytoplankton

*(Except for Prochlorococcus)

Fig. 2. Present global distribution of *Prochlorococcus* and *Synechococcus* abundance. (*A*) *Prochlorococcus* and (*B*) *Synechococcus* mean annual abundances at the sea surface.

EXAMPLE 1: Pro vs. Syn

Pro and Syn coexist throughout the temperate and tropical ocean

Only considering global warming, both Syn and Pro are expected to increase in abundance globally

Flombaum et al. 2013, PNAS

In a model that incorporated the CO₂ growth response, *Syn* still increases in abundance, but *Pro* disappears from the model

Dutkiewicz et al. 2015, Nature Climate Change

"Ground truthing" the model

In a direct competition experiment, we measure the change in ratio of the two competitors. If one becomes more relatively abundant over time, it has higher *fitness*.

The ratio of Pro vs. Syn determined their relative fitness under both CO₂ treatments

Knight and Morris 2018, BioRxiv

Example 2: Pro and Alteromonas

Prochlorococcus needs "helpers" to grow at "ecologically relevant" cell densities in the lab

...Many phytoplankton cultures are not axenic

Prochlorococcus + "helper" Alteromonas

At 800 ppm CO₂, Alteromonas stops helping Pro

Hennon et al 2017, ISME J

Motility

But Syn appears to make up for Alteromonas' stinginess at 800 ppm CO₂

Knight and Morris 2018, BioRxiv

Non-competitive Interactions Dominate this Simple Ecosystem

- Pro and Syn should be strict competitors, but also have positive interactions
- 2. Pro's response to CO₂ is entirely governed by the community context in which it is measured

Why are these bacteria so "friendly"?

 Natural selection favors non-cooperating "cheaters"

Cooperation evolves best in structured populations

Vibrio fischeri and Hawaiian bobtail squid

THIS IS ~ IMPOSSIBLE FOR PHYTOPLANKTON

Corals and symbiotic algae

 Spatial structure prevents intraspecies "cheating" by close relatives

 Vertical transmission cements interspecies bonds (like between animal hosts and symbionts)

The Economics of Community Evolution

- Every biological function has a cost
- The products/services of these functions have a value set by supply vs. demand
- When the cost is greater than the value, natural selection favors organisms that don't perform the function

"Leakiness"

Many functions yield goods/services that are unavoidably "leaked" into the environment

Morris 2015, Trends in Genetics

The Black Queen Hypothesis (Morris et al 2012, mBio)

dependence

The Black Queen Marketplace

 Planktonic cells are suspended in a metabolic marketplace of leaked products from Black Queen functions

The Black Queen Marketplace

 Evolution leads to complex webs of interdependency

How do communities structured by Black Queen functions evolve?

IMPORTANT: Black Queen "mutualisms" are fundamentally less stable than "true" mutualisms

The Long-Term Phytoplankton Evolution (LTPE) Experiment

The Long-Term Phytoplankton Evolution (LTPE) Experiment

Prochlorococcus

Alteromonas maceleodii

Out-standing Questions

 Does rapid evolution in response to environmental change alter key Black Queen relationships?

2. Do phytoplankton and *Alteromonas* evolve specific mutualism-enforcing traits during long-term co-culture?

The Helpers

Alabama School of Fine Arts Maggie Knight

University of Tennessee Erik Zinser Steven Wilhelm

Michigan State University Richard Lenski

LDEO Sonya Dyhrman Gwenn Hennon

MIT

Stephanie Dutkiewicz Mick Follows