

Understanding and predicting the regulation of ocean C:N:P and export production

Adam C. Martiny University of California, Irvine

Acknowledgement

UCI: Greg Britten, Catherine Garcia, Nathan Garcia, Alyse Larkin, Jenna Lee, Keith Moore, Allison Moreno, Francois Primeau, Weilei Wang

Princeton: George Hagstrom, Simon Levin

Bigelow: Mike Lomas

GO-SHIP: Lynne Talley, Greg Johnson, Rik Wanninkhof etc.

The Redfield ratio

C:N:P = 106:16:1

Tight link between vertical elemental inputs and outputs

Static elemental composition of all marine communities!!

This concept has immense influence on ocean biogeochemistry

C:P stoichiometry of surface ocean particles

C:P stoichiometry of surface ocean particles

Field sampling design

A big thanks to GO-SHIP for allowing us to participate

Latitudinal transect

Regional difference

Fay and McKinley: Global open-ocean biomes: mean and temporal variability. 2014.

Clear patterns but why?

- Latitudinal pattern in C:N:P
 - Low in high latitude waters (but variation in SO) rKST
 - High in gyres
 - Intermediate in equatorial upwelling regions
- Here, we tested for growth rate and nutrient limitation using Synechococcus as model
 - Hyp1: High C:P and N:P at low growth
 - Hyp2: High C:P and N:P under P limitation

Chemostat setup

Strain: Synechococcus WH8102

Inflow

Medium $NO_3^-: PO_4^{3-}$

N-limited (6:1) P-limited (70:1)

Outflow

Growth rates 0.77 d⁻¹ 0.60 d⁻¹ 0.45 d⁻¹ 0.34 d⁻¹

Temp. = 24°C, 195 μ E m⁻² s⁻¹

Cell quota

Work by N. Garcia

Increase w. growth rate (Droop-like)

P quota smaller under P limitation

Cell quota

Cell quota

Large increase in C quota (and cell size) w. growth!

Interactive effect of growth rate and nutrient limitation on stoichiometry

Degree of P stress important

Data to model

- 1. Design a trait-based model to describe regulation of C:P (acclimation + adaptation)
- 2. Embed trait-based model in an ocean GCM model w. an optimized P cycle (optimized match to global DIP from WOA)
- 3. Predict patterns and magnitude C:P_{export} and C_{export}

Trait-based model

Designed by George Hagstrom Inspired by Daines et al., 2014

Moreno, Hagstrom et al., Biogeosci.. 2018

Model optimization and sensitivity

(optimized against POM data)

Prediction

Surface P concentration important parameter in controlling C:P but highly uncertain in many low latitude regions

C:P of exported material

Galbraith-Martiny empirical model (C:P ~ [P])

Trait-based model (C:P ~ [P],T,L)

 50
 100
 150
 200
 250
 300

Predicted C:P of exported material

Carbon export flux

Galbraith-Martiny (CP~ [P]

Trait-based model (C:P ~ [P],T,L)

Carbon export flux

Better match to trap data

Mouw et al., Global ocean particulate organic carbon flux merged with satellite parameters. 2016.

Better match to trap data

Redfield model underestimate C_{export} in NA gyre and underestimate in S. Ocean

Conclusions

- Clear latitudinal pattern in C:N:P
- Culture experiments can help describe biological mechanisms regulating C:N:P
- Trait model suggests C:P of exported predicted by higher in low nutrient, warm low latitude waters
- Higher C_{export} in oligotrophic regions than currently predicted by ESMs

Conclusions

- Clear latitudinal pattern in C:N:P
- Culture experiments can help describe biological mechanisms regulating C:N:P
- Trait model suggests C:P of exported predicted by higher in low nutrient, warm low latitude waters
- Higher C_{export} in oligotrophic regions than currently predicted by ESMs

Thank You!