



# Acclimation of pigment content and photosynthesis in microalgae.

## 2018 Fichard Geider University of Essex

### Outline

- Simple models of links amongst photosynthesis, respiration, nitrogen assimilation and chlorophyll synthesis.
  - Geider, Kana & MacIntyre (GKM 1998)
  - Ross & Geider (2009)
- erWorkshof Acclimation of photosynthetic rates and photosynthetic proteins to lighte and nutrient-limitation in Emilania huxleyi
  - McKevy et al. (2013)
  - McKew *et al.* (2015)
- Conclusions

Alternative hypotheses to explain variability of chlorophyll-to-carbon ratio

**Physiological regulation**: Pigment content is regulated by excitation pressure to reduce the susceptibility of cells to photooxidative stress in high light.

**Optimal allocation model:** Growth rate is maximized by changing the allocation of biomass between the pigments that absorb light and the catalysts that use light energy for photosynthesis and biosynthesis.

#### Light Limitation - GKM (1996) model



Geider, Kana, MacIntyre (1996) A dynamic model of photoadaptation in phytoplankton. *Limnology & Oceanography* 41: 1-15

Photosynthesis – Respiration

$$\mu = \frac{1}{C} \frac{dC}{dt} = \left( P^C - \zeta \cdot V_N^C - R_0^C \right)$$

Nitrogen Uptake – Remineralisation

$$\frac{1}{C}\frac{dN}{dt} = V_N^C - R_0^N \cdot Q$$

Chlorophyll Synthesis – Degradation

$$\frac{1}{C}\frac{dChl}{dt} = \rho_{Chl} \cdot V_N^C - R_0^{Chl} \cdot \theta^C$$

C = organic carbon N = organic N ChI = chlorophyll  $\theta^{C}$  = ChI:C ratio Q = N.C ratio

 $P^{C}$  = C-specific photosynthesis  $V_{N}^{C}$  = C-specific N assimilation  $\zeta$  = Cost of biosynthesis  $R_{0}^{C}$ ,  $R_{0}^{N}$ ,  $R_{0}^{Chl}$  = Maintenance Metabolic Rates  $\rho_{Chl}$  = regulation of chlorophyll

Geider, Kana, MacIntyre (1998) A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. *Limnology & Oceanography* 43: 679-694

synthesis







#### **Kinetics of Photoacclimation - GKM98**



# Optimality Models of Photoacclimation as alternatives to GKM98.

optimality models "explain the downregulation of ChI:C at intermediate to high irradiance levels as a consequence of a negative relation between the light harvesting and biosynthetic apparatuses."

"optimal-growth models can reproduce the relationship between N:C and Chl :C ratios for light limited growth"

whereas "the model of Geider et al. (1998) predicts almost constant N:C" under light limitation



Data from Laws & Bannister (1980). Limnol Oceanogr 25: 457-473.

Pahlow (2005) Mar Ecol Prog Ser 287: 33-43.

Armstrong (2006) Deep-Sea Research II 53: 513-531.

Smith, Pahlow, Merico & Wirtz (2011) Optimality-based modeling of planktonic organisms. *Limnology & Oceanography* 56: 2080-2094

#### N:C and ChI:C in light-limited, nutrient replete conditions



Laws & Bannister (1980) data for *Thalassiosira weissflogii* Original data data for *Phaeodactylum tricornutum* & *Thalassiosira pseudonana* 

#### Light-limited Growth on a Light-Dark Cycle Ross-Geider (2009) Model



Ross & Geider (2009) New cell-based model of photosynthesis and photo-acclimation: accumulation and mobilisation of energy reserves in phytoplankton. *Marine Ecology Progress Series* 383: 53-71 Observations from Anning et al. (2000) Photoacclimation in the marine diatom *Skeletonema costatum. Limnology & Oceanography* 45: 1807-1817.

#### Light-limited Growth on a Light-Dark Cycle Ross-Geider (2009) Model



Ross & Geider (2009) New cell-based model of photosynthesis and photo-acclimation: accumulation and mobilisation of energy reserves in phytoplankton. *Marine Ecology Progress Series* 383: 53-71 Observations from Anning et al. (2000) Photoacclimation in the marine diatom

Skeletonema costatum. Limnology & Oceanography 45: 1807-1817.

#### Light Acclimation of *Emiliania huxleyi* Photosynthesis



McKew et al. (2013) The trade-off between the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins dominates light acclimation in *Emiliania huxleyi* (clone CCMP 1516). *New Phytologist* 200: 74-85. doi: 10.1111/nph.12373

#### Light Acclimation of Emiliania huxleyi Proteome



McKew et al. (2013) The trade-off between the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins dominates light acclimation in *Emiliania huxleyi* (clone CCMP 1516). *New Phytologist* 200: 74-85. doi: 10.1111/nph.12373

#### Light Acclimation of Emiliania huxleyi Proteome



McKew et al. (2013) The trade-off between the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins dominates light acclimation in *Emiliania huxleyi* (clone CCMP 1516). *New Phytologist* 200: 74-85. doi: 10.1111/nph.12373

#### P-limitation and N-limitation in Emilania huxleyi



McKew et al. (2015) Acclimation of *Emiliania huxleyi* (1516) to nutrient limitation involves precise modification of the proteome to scavenge alternative sources of N and P. *Environmental Microbiology* 17: 4050-4062.

#### P-limitation and N-limitation of photosynthesis in *Emilania huxleyi*



Original unpublished data of McKew et al.

#### P-limitation and N-limitation of photosynthesis in *Emilania huxleyi*



Original unpublished data of McKew et al.

### Conclusions

- Down-regulation of pigment synthesis can be parameterised using an index of excitation pressure.
- Catalytic rates of enzymes are regulated by cellular nutrient and light status.
- This regulation is likely to be as important in controlling how phytoplankton use light and nutcients as is allocation of resources (C, N, P) amongst these catalysts.
- Energy (organic carbon) and nutrient storage pools, which allow episodic variability of resources (light, N, P, Fe) to be exploited, contribute to variability in phytoplankton elemental stoichiometry.

# Design considerations for the photosynthetic apparatus.

- Capital costs (e.g., C, N) of synthesizing the structural and functional components of the cell.
- Energetic and catalytic efficiencies of CO<sub>2</sub> fixation, nutrient acquisition and biosynthesis.
- Running costs associated with cell maintenance.
- Costs of preventing, repairing, or failing to repair photooxidative damage.
- Opportunity costs associated with exploiting (or failing to exploit) variability in the environment.