OCB 2018 Summer Workshop

Benthic Oxygen Respiration Rates on the Oregon Shelf in Winter and Spring

Clare Reimers, Kristen Fogaren, Peter Chace and Yvan Alleau College of Earth, Ocean, & Atmospheric Sciences Oregon State University, Corvallis, OR 97331, USA

Take Away Message

New winter and spring measurements of benthic oxygen consumption derived using eddy covariance (EC) methods indicate intensified benthic respiration driven by

Instrumentation

Two landers equipped with Rockland Scientific MicroSquid-FireSting O₂ (MS-FS) modules that interface PyroScience fiber optic oxygen sensors with a Nortek Vector Acoustic Doppler Velocimeter were used for the collection of simultaneous 64 Hz velocity and dissolved oxygen time series at fixed points 15-30 cm above the seafloor. On some deployments a Rockland MicroSquid with a FP07 micro-thermistor was also used to collect high resolution temperature records for heat flux estimates.

high energy wave conditions and an over-winter retention of organic matter in the Oregon shelf bottom boundary layer. EC measurements were made repeatedly over sand sediments in December 2017 and January, February and May 2018 at ~30 m and 80 m stations adjacent to inshore and mid-shelf moorings of the Ocean Observatories Initiative (OOI) Endurance Array. Six more 2-5 day cruises will extend this seasonal study into 2019.

Research Questions

- \succ What is the temporal variability of benthic O₂ fluxes on the Oregon shelf?
- > Are benthic respiration rates great enough to be the cause of hypoxia?
- How does the near-bottom dynamics of the Oregon shelf environment influence benthic respiration?
- \succ Is the POM produced during the summer upwelling season degraded rapidly in the shelf environment or retained to fuel respiration throughout the year?

Sensor Performance

The PyroScience fiber optic sensors are able to detect oxygen variations ~0.2 µM (with standard Microsquid A/D settings) and do not show a sensitivity to the large variations in velocity created by wave motions.

EC Flux Results

Illustrative deployment records analyzed in 30 min intervals. Each interval was detrended with a 0.005 Hz frequency filter, velocities rotated to minimize wave vertical velocities, and correlation-based time-lag corrections applied to oxygen record before calculating the EC flux.

Oregon Shelf Hypoxia

Acknowledgements

This research is supported by NSF grant OCE 1634319 and by associated ship operations and marine technical services on the *R/V Oceanus*.