Following diatom response to ocean acidification in mesocosm experiments with metatranscriptome
sequencing indicates contrasting CO, responses in Skeletonema and Thalassiosira diatoms
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Background Methods

- Fossil fuel combustion has raised atmospheric pCO, from ~277 ppm in 1750 to the present level of ~400 ppm2. - Seawater from Vineyard Sound, MA was F:ollected ir\ March of 2014.1,.pre-ﬁltered to remove large grazers (200 pm), and amended with nutrients. o y

. levels of dissolved CO. gas in seawater perturbs carbonate chemistry in the ocean, which results in a decreased buffering capacity, or ocean acidification (OA)3. ~PCO, levels were mampm.at.ed to approximate pre-in dustrial conditions (< 21> ppm PCO,) present d ay PCO, in the open ocean (330-390 ppm pCO,), and future pCO, projections (>780 ppm pCO, )™
Increased leve T2 9 P . y ! . g capacity, - Chlorophyll, nitrate and nitrite, phosphate, silicic acid, and pCO, levels (alkalinity, dissolved inorganic carbon, and pH) were measured and recorded throughout the experiment.

- The ocean sequesters approximately 1/3 of anthropogenic C02 and has been the only net sink for C02 in the past 200 years*>. - After 20 days of incubation, biomass was collected on 3 um pore-size polyester filter by gentle filtration, flash frozen in liquid nitrogen, and stored at -80 °C until DNA and RNA extraction.

- Diatoms are responsible for ~40% of oceanic primary production based upon photosynthetic fixation of CO,, which is aided by a carbon-concentrating mechanism (CCM), - For amplicon sequencing from the extracted DNA, diatom-specific primers to amplify the V4 region of the 185 rDNA gene were modified to include Illumina MiSeq sequencing adapters' ™,

which uses bicarbonate transporters (BCTs) to take up HCO,- and carbonic anhydrases (CAs) to interconvert HCO,- and CO_* "%, - Between 100,000-500,000 2x250 bp reads were sequenced per amplicon library and adapter sequences were trimmed from raw reads using CutAdapt'®

- There are several distinct classes of BCTs and CAs found in diatoms, including the substrate specific SLC4 and non specific SLC26 BCTs, as well as the - DADA2'® was used to de-noise reads, merge read pairs, remove chimeras, and trim on length (less than 390 bp or greater than 410 bp') and taxonomy was assigned using the PR2 DB".
a,B, 8, Yy, and 6 CAs®10.11.12 - Metatranscriptomes were sequenced from RNA, with equal amounts of total RNA pooled from like-replicates pre library preparation (polyA mRNA enrichment).

. . : . : : . e . - Approximately 30 million 2x100 bp reads were sequenced per metatranscriptome library.
- The ability to regulate and conserve energetic costs associated with the CCM may influence diatom community composition in a higher COZ future - Reads were trimmed (Trimmomatic)'® and mapped (BWA-MEM'™ and SAMtools* or DIAMOND?') to the MMETSP database??, which was clustered at 98% ID per species in CD-HIT-EST*:%* .

- This study used mesocosm CO, manipulation incubations to examine the diatom community response to changes in pCO,. - Differential gene expression was inferred separately for each species, using the raw counts in Analysis of Sequence Counts?.

Metatranscriptome reads and amplicon ASVs dominated by Skeletonema and Thalassiosira

Figure 1: A series of bar graphs showing the taxonomic

Figure 1 1A DIAMOND 1B DIAMOND 1C DIAMOND 1D BWA MAPQ60 Species 1E V4 Amplicon . .
. . i proportion of metatranscriptpome reads (MMETSP DB)
Phylum Counts Bacillariophyta Genera Counts Species Counts Counts Skeletonema and ASVs and ASVs (PR2 DB). Metatranscriptome reads were
Clustered MMETSP Clustered MMETSP Clustered MMETSP Thalassiosira only PR mapped to proteir;s in the MMETSP DB using DIAMOND

(--top 0 —more-sensitive —evalue .00001) and the top
hits were binned and summed on the phyla level,
which indicated that most of the reads were mapping
to the Bacillariophyta (Figure 1A), mainly Skeletonema
and Thalassiosira spp. (Figure 1B and 1C).

The presence of Skeletonema and Thalassiosira was
confirmed by a stringent mapping step

(BWA MEM -T 60 —-aM -k 10; samtools view -q 60 -b)
against Skeletonema and Thalassiosira nucleotide
sequences from the clustered MMETSP DB (1D).
Diatom specific V4 amplicon sequencing,

ASV assignment and binning by genus

confirms that Skeletonema and Thalassiosira

were present in these incubations (1E).

This is consistent with previous studies that found
both of these diatoms in Massachusetts Bay during
the month of March®.
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Skeletonema regulates the yCAs, {CAs, and SLC26 BCTs Thalassiosira regulate aCAs, 8CAs, {CAs, SLC4 BCTs, and SLC26 BCTs Conclusions

Figure 2 Skeletonema ® Thalassiosira -The disparity.in the COZ—Se.nsitivity
of the 6CAs might be explained by

CCA the observation that Thalassiosira
and Skeletonema have distinct
sub-types of SCAs'".

- CAs use different metal cofactors:
y CAs can substitute zinc cofactors
with iron, while the & can substitute
zinc with cobalt?” %,

(<215 ppm)

2
log10 reads mapped
per species per million reads

- The expression of the BCTs suggest
that these two diatoms use different
mehanisms of inorganic carbon
uptake: Skeletonema uses diffusive
CO, uptake and/or non-specific
SLC26-mediated HCO_- transport,
whereas Thalassiosira uses substrate
specific SLC4 HCO,- transport” ™,

Low CO

(>780 ppm)

2

- These diatoms’ co-existence may be
partially explained by their reliance on
CAs that use different metal cofactors
or their use of different inorganic
carbon pools (CO, orHCO.-).

log10 reads mapped
per species per million reads

High CO

- If Skeletonema is relying on diffusive
Presenrogggag::,?ngggego Ppm) CO, uptake rather than active HCO.-

per species per million reads transport, Thalassiosira diatoms’ ability

* |ndicates >= 0.95 posterior probability of a 2-fold change in high or low CO, relative to the present-day approximation. to CO,-sensitively regulate the S5LC4

Figure 2: A series of 1:1 lines showing the expression of CAs and BCTs from Thalassiosira and Skeletonema. Each point on the plot represents a transcript. Per-transcript expression values shown are transporters might afford it an
normalized based on the total number of reads mapped over all transcripts in that species and then log10 transformed. Differential gene expression was inferred separately for each species, using the raw energetic benefit and competitive
counts in Analysis of Sequence Counts®. Genes with at least 0.95 posterior probability of a 2-fold change were considered differentially expressed and are indicated by the black stars if they are up in low advantage over Skeletonema

CO, or down in high CO_, as would be expected for genes important for CCM function. in high CO,,
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