Following diatom response to ocean acidification in mesocosm experiments with metatranscriptome sequencing indicates contrasting CO₂ responses in *Skeletonema* and *Thalassiosira* diatoms

J.R. Wallace¹ (joselynn@uri.edu), A.L. King², G.H. Wilkfors³, S.L. Meseck³, Y. Liu³, B.D. Jenkins^{1,4} ¹The Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA ² NIVA Norwegian Institute for Water Research, Bergen, Norway

³NOAA/NMFS, Northeast Fisheries Science Center, Milford Laboratory, Milford, CT, USA

⁴ Graduate School of Oceanography, University of Rhode Island, Narragansett, RI USA

Background

- Fossil fuel combustion has raised atmospheric pCO₂ from ~277 ppm in 1750 to the present level of ~400 ppm^{1, 2}.

- Increased levels of dissolved CO₂ gas in seawater perturbs carbonate chemistry in the ocean, which results in a decreased buffering capacity, or ocean acidification (OA)³.
- The ocean sequesters approximately 1/3 of anthropogenic CO_2 and has been the only net sink for CO_2 in the past 200 years^{4, 5}.
- Diatoms are responsible for ~40% of oceanic primary production based upon photosynthetic fixation of CO₂, which is aided by a carbon-concentrating mechanism (CCM), which uses bicarbonate transporters (BCTs) to take up HCO₃- and carbonic anhydrases (CAs) to interconvert HCO₃- and CO₂^{6,7,8}.
- There are several distinct classes of BCTs and CAs found in diatoms, including the substrate specific SLC4 and non specific SLC26 BCTs, as well as the α , β , δ , γ , ζ , and θ CAs^{9, 10, 11, 12}.

- The ability to regulate and conserve energetic costs associated with the CCM may influence diatom community composition in a higher CO₂ future - This study used mesocosm CO₂ manipulation incubations to examine the diatom community response to changes in pCO_2 .

Methods

Seawater from Vineyard Sound, MA was collected in March of 2014, pre-filtered to remove large grazers (200 µm), and amended with nutrients.
pCO₂ levels were manipulated to approximate pre-industrial conditions (< 215 ppm pCO₂), present day pCO₂ in the open ocean (330-390 ppm pCO₂), and future pCO₂ projections (>780 ppm pCO₂)^{1,-2}.
Chlorophyll, nitrate and nitrite, phosphate, silicic acid, and pCO₂ levels (alkalinity, dissolved inorganic carbon, and pH) were measured and recorded throughout the experiment.
After 20 days of incubation, biomass was collected on 3 µm pore-size polyester filter by gentle filtration, flash frozen in liquid nitrogen, and stored at -80 °C until DNA and RNA extraction.
For amplicon sequencing from the extracted DNA, diatom-specific primers to amplify the V4 region of the 185 rDNA gene were modified to include Illumina MiSeq sequencing adapters^{13, 14}.
Between 100,000-500,000 2x250 bp reads were sequenced per amplicon library and adapter sequences were trimmed from raw reads using CutAdapt¹⁵
DADA2¹⁶ was used to de-noise reads, merge read pairs, remove chimeras, and trim on length (less than 390 bp or greater than 410 bp¹³) and taxonomy was assigned using the PR2 DB¹⁷.
Metatranscriptomes were sequenced from RNA, with equal amounts of total RNA pooled from like-replicates pre library preparation (polyA mRNA enrichment).
Approximately 30 million 2x100 bp reads were sequenced per metatranscriptome library.
Reads were trimmed (Trimmomatic)¹⁸ and mapped (BWA-MEM¹⁹ and SAMtools²⁰ or DIAMOND²¹) to the MMETSP database²², which was clustered at 98% ID per species in CD-HIT-EST^{23, 24}.

- Differential gene expression was inferred separately for each species, using the raw counts in Analysis of Sequence Counts²⁵.

Metatranscriptome reads and amplicon ASVs dominated by Skeletonema and Thalassiosira

Figure 1 1A DIAMOND Phylum Counts

1B DIAMOND Bacillariophyta Genera Counts 1C DIAMOND1D BWA MAPQ60 SpeciesSpecies CountsCounts Skeletonema and

1E V4 Amplicon ASVs Figure 1: A series of bar graphs showing the taxonomic proportion of metatranscriptpome reads (MMETSP DB) and ASVs (PR2 DB). Metatranscriptome reads were

	Clustered MMETSP	Clustered MMETSP	Clustered MMETSP	Thalassiosira only		PR		and ASVs (PR2 DB). Metatranscriptome reads were mapped to proteins in the MMETSP DB using DIAMOND
Low Present High	 Bacillariophyta Dinophyta Ochrophyta Ciliophora Unknown Chlorophyta Alveolata Alveolata Other 	 Thalassiosira Skeletonema Ditylum Chaetoceros Fragilariopsis Asterionellopsis Pseudo-nitzschia Amphiprora Extubocellulus Other 	 Skeletonema marinoi Skeletonema costatum Skeletonema dohrnii Skeletonema dohrnii Thalassiosira miniscula Thalassiosira veissflogii Thalassiosira sp. Thalassiosira gravida Thalassiosira punctigera 	 Skeletonema marinoi Skeletonema dohrnii Skeletonema dohrnii Skeletonema dohrnii Thalassiosira miniscula Thalassiosira veissflogii Thalassiosira sp. Thalassiosira sp. Thalassiosira gravida Thalassiosira punctigera Thalassiosira policita 	 Thalassiosira Skeletonema Nitzschia Chaetoceros Navicula Attheya Grammonema Polar-centric-Mediophyceae Porosira Other 	 Thalassiosira Skeletonema Nitzschia Chaetoceros Navicula Attheya Folar-centric-Mediophyceae Porosira Other 	 Thalassiosira Skeletonema Nitzschia Navicula Attheya Folar-centric-Mediophyceae Porosira Other 	(top 0 -more-sensitive -evalue .00001) and the top hits were binned and summed on the phyla level, which indicated that most of the reads were mapping to the Bacillariophyta (Figure 1A), mainly <i>Skeletonema</i> and <i>Thalassiosira</i> spp. (Figure 1B and 1C). The presence of <i>Skeletonema</i> and <i>Thalassiosira</i> was confirmed by a stringent mapping step (BWA MEM -T 60 -aM -k 10; samtools view -q 60 -b) against <i>Skeletonema</i> and <i>Thalassiosira</i> nucleotide sequences from the clustered MMETSP DB (1D). Diatom specific V4 amplicon sequencing, ASV assignment and binning by genus confirms that <i>Skeletonema</i> and <i>Thalassiosira</i> were present in these incubations (1E). This is consistent with previous studies that found both of these diatoms in Massachusetts Bay during the month of March ²⁶ .
Sk	keletonema reg	julates the y CAs, ζ CAs, ar	nd SLC26 BCTs	Thalassiosira regulate α CAs, δ CAs, ζ CAs, SLC4 BCTs, and SLC26 BCTs			Conclusions	

- CAs use different metal cofactors: γ CAs can substitute zinc cofactors with iron, while the δ can substitute zinc with cobalt^{27, 28}.

- The expression of the BCTs suggest that these two diatoms use different mehanisms of inorganic carbon uptake: *Skeletonema* uses diffusive CO₂ uptake and/or non-specific SLC26-mediated HCO₃- transport, whereas *Thalassiosira* uses substrate specific SLC4 HCO₃- transport^{9, 10}.

- These diatoms' co-existence may be partially explained by their reliance on CAs that use different metal cofactors or their use of different inorganic carbon pools (CO_2 or HCO_3 -).

- If *Skeletonema* is relying on diffusive CO_2 uptake rather than active HCO_3 transport, *Thalassiosira* diatoms' ability to CO_2 -sensitively regulate the SLC4 transporters might afford it an energetic benefit and competitive advantage over *Skeletonema* in high CO_2 .

Indicates >= 0.95 posterior probability of a 2-fold change in high or low CO₂ relative to the present-day approximation.
Figure 2: A series of 1:1 lines showing the expression of CAs and BCTs from *Thalassiosira* and *Skeletonema*. Each point on the plot represents a transcript. Per-transcript expression values shown are normalized based on the total number of reads mapped over all transcripts in that species and then log10 transformed. Differential gene expression was inferred separately for each species, using the raw counts in Analysis of Sequence Counts²⁵. Genes with at least 0.95 posterior probability of a 2-fold change were considered differentially expressed and are indicated by the black stars if they are up in low CO₂ or down in high CO₃, as would be expected for genes important for CCM function.

References					
 Tans, P., 2009. An Accounting of the Observed Increase in Oceanic and Atmospheric CO₂ and the Outlook for the Future. Oceanography Le Quéré, C. et al., 2016. Global Carbon Budget 2016. Earth System Science Data Caldeira, K. & Wickett, M.E., 2003. Oceanography: Anthropogenic carbon and ocean pH. Nature Sabine, C.L. et al., 2004. The Oceanic Sink for Anthropogenic Carbon. Biogeosciences Khatiwala, S. et al., 2013. Global ocean storage of anthropogenic Carbon. Biogeosciences Netson, D. M., et al., 1995. Production and Dissolution of Biogenic Silica in the Ocean - Revised Global Estimates, Comparison with Regional Data and Relationship to Biogenic Sedimentation. Global Biogeochemical Cycles Badger, M.R. et al., 1998. The diversity and coevolution of Rubisco plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Canadian Journal of Botany Hopkinson, B.M. et al., 2013. SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. PNAS Alper, S.L. & Sharma, A.K., 2013. The SLC26 Gene Family of Anion Transporters and Channels. Molecular Aspects of Medicine Shen, C., et al., 2017. The diversity of carbon dioxide-concentrating mechanisms in marine diatoms as inferred from their genetic content. Journal of Experimental Botany Kikutani, S. et al., 2011. Barcoding diatoms: Evaluation of the V4 subregion on the 185 rRNA gene, including new primers and protocols. Organisms Diversity and Evolution Mellett, T. et al., 2018. The biogeochemical cycling of iron, copper, nickel, cadmium, manganese, cobalt, lead, and scandium in a California Current experimental study. Limoerane and protocols. 	 Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. Callahan, B.J. et al., 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods. Guillou, L. et al., 2013. The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Research Bolger, A.M. et al., 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics Li, H. & Durbin, R., 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics Li, H. & Durbin, R., 2015. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics Li, H. et al., 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics Buchfink, B., 2015. Fast and sensitive protein alignment using DIAMOND Keeling, P.J. et al., 2014. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing. PLoS Biology Li, W. & Godzik, A., 2006. CD-HIT: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics Alexander, H. et al., 2015. Metatranscriptome analyses indicate resource partitioning between diatoms in the field. PNAS Swu, Z. et al., 2010. Empirical bayes analysis of sequencing-based transcriptional profiling without replicates. BMC Bioinformatics Hunt, C.D. et al., 2010. Phytoplankton patterns in Massachusetts Bay: 1992-2007. Estuaries and Coasts Lane, T.W. & Morel, F.M.M., 2000. Regulation of Carbonic Anhydrase Expression by Zinc, Cobalt, and Carbon Dioxide in the Marine Diatom <i>Thalassiosira weissflogii</i>. Plant Physiology Tripp, B.C. et al., 2004. A Role for Iron in an Ancient Carbonic A				