COLUMBIA ENGINEERING The Fu Foundation School of Engineering and Applied Science

Introduction

 Advanced data mining techniques are becoming widely us extracting new meaningful information from large and con

 In studies of the global carbon cycle, lack of understandin drivers confounds our ability to accurately describe, unders changes in the major planetary carbon reservoirs

• We employ cluster analysis as a means of identifying and (Landschuetzer product) and temperature at 10m (ARGO Contemporation of the second seco

 We assess how researchers could potentially use this expl systems by correlating the interannual and spatial variability and other physical fields like salinity and chlorophyll with

Multivariate Analysis

<u>Cluster Analysis</u>: The k-means algorithm interprets a dynan with spatial nodes that are connected by a time series.

Choosing Optimal Variables for Clustering

- The air-sea exchange of CO₂ defines 2 main pathw uptake CO₂:
 - 1. The chemical disequilibrium expressed by pCO nutrients in biogeochemical processes
 - 2. Physical processes (e.g. air-sea interaction and
- The physical variables partial pressure of CO₂ (pC \bullet surface temperature (SST) [ARGO T profile at 10n space can be used to understand CO₂ flux distribution

Determining optimal number of clusters

- Checklist:
 - ✓ There cannot be degenerate clusters
 - The number of clusters needs to make physical ser
 - ✓ No new, significant information can be gained by

Methodology

Figure 1: a) Prepare input variables on same grid, b) Run pre-clustering analysis, c) I

J e A	Rebecca Latto, A pplied Physics and Applied Math	
		Ο
used in Climate and E mplex datasets.	arth Science with the purpose of	
	physical and biogeochemical O2 concentrations and their	
d comparing spatial a Coriolis product) for 2	nd temporal patterns ¹ of pCO2 2000-2015	
	ol to better understand complex e indices (ENSO, AO, NAO, etc.)	
		be
mical Earth system as	s a geophysical, climate network,	Occupied By Cluster 1
ways that determine	the ability of the ocean to	ree Grids Occupied E
O ₂ of surface water, o	dissolved inorganic carbon, and	# of 5x5 degree Grids
d ocean circulation)		Fi
Z · -	SOCAT product] and sea use their joint parameter y for 2000-2015	# of 5x5 degree Grids Occupied By Cluster 1
		Figure 4
ense for the given sys adding a new cluste		C
c) Output: k clusters	The second secon	I • •
	time time	• • Ac
Investigate cluster output by analyz	time time	Com Moc

OCEAN CARBON STATES BASED ON K-MEANS CLUSTER ANALYSIS **Rebecca Latto. Anastasia Romanou**

mbia University and NASA GISS

Dcean Carbon States

Figure 2: For k = 10, each cluster histogram is the average distribution of the histograms assigned to each cluster. The color bar represents the abundance of the variable-pair relationships between pCO2 and SST within each cluster and the relative frequency of occurrence (RFO) denotes how many histograms out of the total number of histograms are represented by each cluster.

reliminary Post-Clustering Analysis for Cluster 1

- pCO2: 325 350 uatm
- Flux: -1 -4 mol/m² (outgassing)
- Salinity: 34.2 35.7
- Chlorophyll: 0.223 1.65 mg/m³

pCO2: 290 – 425 uatm Flux: -5 – 5 mol/m² Salinity: 35 – 36.5 Chlorophyll: $0.105 - 0.47 \text{ mg/m}^3$

Discussion and Future Work

Post-clustering analysis needs to be further explored for each cluster A comprehensive analysis is necessary to fully understand if and what physical significance the clusters have **Optimization analyses can be performed to better the k-means cluster analysis outputs** Standardization of the methodology will enable other scientists to conduct their research using this analysis

cknowledgements

mputing resources used: NASA High-End Computing (HEC) Program of the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. Funding: NASA-ROSES odeling, Analysis and Prediction 2013 NNX14AB99A-MAP and NNX15AJ05A. Clustering analysis: MATLAB ver 2016 computing environment.

Figure 5: a) Spatial assignments of clusters 1-10 in October 2001. b) Spatial assignments of clusters 1-10 in October 2014