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Introduction

Low oxygen (anoxic) regions play a significant role in the health of the Chesapeake Bay ecosystem. Nutrient runoff from agricultural and industrial 

practices produce these low oxygen areas in the Bay, especially at depth during summer months. However, certain chemical components may have 

varying degrees of influence on dissolved oxygen (DO) in different regions of the Bay. Determining which combinations of nutrients and environmental 

variables produce these patterns can be difficult.

Machine learning has been used increasingly in science and private industry, but has yet to take hold in oceanography. A frequent criticism raised against 

these techniques is their “black-box” nature, in that it can be challenging to ascertain how outcomes were produced. Here, we examined a machine 

learning technique called random forest (RF) analysis for its ability to accurately predict outcomes on a biogeochemistry model and its interpretability. 

We then began a preliminary investigation of 41 Chesapeake Bay monitoring stations to assess if RF analysis could predict dissolved oxygen (DO) with 

no time lag and a time lag of one month.

Control Case

Our control case used model output for surface observations from a non-linear biogeochemistry model called BLING (Biogeochemistry with Light, 

Iron, Nutrients, and Gases) (Galbraith et al. 2010), in which the output is biomass and the inputs are iron, light, and nutrients. This was chosen as an 

ideal control scenario since the relationships are complex and they are known.

The RF analysis performed well, giving a R2 of 0.972 between the predictions and observations. It was able to explain 96.5% of the variability and 

correctly predicted the most significant predictors as iron and light (irradiance). Additionally, the relationships via the partial dependence plots appeared 

to show that co-limitations were also captured in the analysis.

Chesapeake Bay

Data for 41 stations from the Chesapeake Bay was used in our preliminary RF analysis to 

predict dissolved oxygen concentrations with no time lag and a time lag of one month. 

The dataset included 28 variables from 2008 to 2018. 

The initial RF model with no time lag used all possible predictors and produced a R2 of 

0.959 between the observations and predictions. Following this, we ran another RF 

model using only the top five predictors from the initial model. The new model was still 

able to give a R2 of 0.943 and showed the top predictors for the “no time lag” model 

were water temperature and pH. The partial dependence demonstrated that water 

temperature had a negative relationship with DO, while pH had a positive relationship 

(shown). Furthermore, the only area whose pattern was not captured well was the 

Northernmost region near the mouth of the Susquehanna River where the observations 

were higher than the predictions.

The initial RF model with a time lag of one month again used all of the possible 

predictors to start. We used observations for the predictors from one month and used the 

subsequent month’s observation for DO. The RF model gave a R2 of 0.811 between the 

predictions and observations. Next, we ran a RF model with the top five predictors from 

the “one month time lag” model. This only reduced the R2 to 0.771. The top predictors 

for this case were water temperature and depth. The “pH” variable was also seen again as 

one of the top predictors. The partial dependence plots showed a positive relationship 

between DO and pH (shown), while water temperature and depth showed negative 

relationships with DO. Similar to the “no time lag” model, this “one month time lag” 

model, showed that the area with the biggest differences between observations and 

predictions was near the mouth of the Susquehanna River.

Conclusions and Future Work

RF analysis does a remarkable job at capturing patterns within complex datasets, as shown by the results for the non-linear BLING control case. 

Furthermore, it appears to have some capability of predicting environmental conditions in natural datasets.

Future work may focus on a more in-depth analysis of these initial Chesapeake Bay results, as well as examining further time lags. Additionally, we 

may examine possible relationships between environmental conditions and microbial community genetics using RF analysis.

References

Breiman, L. Random forests, 2001. Machine Learning, 45(1):5-32.

Chesapeake Bay Program, Water Quality, Maryland Department of Natural Resources (2008-2018). Chesapeake Bay Stations CB1.0 to CB5.3 [Data File]. 

Retrieved from http://data.chesapeakebay.net/WaterQuality.

Chesapeake Bay Program, Water Quality, Old Dominion University (2008-2018). Chesapeake Bay Stations CB5.4 to CB8.1E [Data File]. 

Retrieved from http://data.chesapeakebay.net/WaterQuality.

Galbraith, E.D., A. Gnanadesikan, J.P. Dunne, and M.R. Hiscock, 2010.  Regional impacts of iron-light colimitation in a global biogeochemical model. 

Biogeosciences, 7(3):1043-1064.

Acknowledgements

The authors would like to thank the Johns Hopkins University, Department of Earth and Planetary Sciences and the National Science Foundation Integrative 

Graduate Education and Research Traineeship.


