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OCEAN ACIDIFICATION 
Hawaii Time-series 

Northeast Pacific P17 (Chu et al. 2016) 



Challenges	for	OA	Sensor	Development	
Ø  OA	signals	are	analy,cally	small	

ΔpH	~	-0.001	–	0.003/yr;	ΔDIC	~+1	–	3	µmol	kg-1/yr	;		
ΔpCO2	~	+1	–	3	µatm/yr	
but	depends	on	what	signals	you	want	to	detect:	
	--	Long-term	small	signal	(climatology)		
	--	Short-term	large	variability	

Ø  Simultaneous	measurements	of	two	CO2	parameters	
Which	pair	maQers	

	 Millero 2007 

ü  pCO2 and pH sensors 
are robust and 
commercially available 

ü  DIC and TA sensors are 
less mature 



Probability of obtaining a good DIC flux estimate (within 25% of the 
true mean) for a given tide using different sampling protocols 

ü Measurement frequency and duration matters 
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Tidal export DIC flux from marshes 
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Recent	Development	

•  New-genera,on	pCO2	and	pH	sensors	



Deep	SeaFET		
Sensors	opera3onal	in	difficult	environments.		WMO	#5904468	3	years	under	ice	

in	Weddell	Sea,	first	biogeochemical	record	from	the	Weddell	Polyna.		
	

	

Courtesy	of	K.	Johnson	



New	spectrophotometric	pH	instrumenta3on	

Handheld	“pHyter”		

XPRIZE	supported	
iSAMI	pH	
technology	
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Courtesy	of	M.	DeGrandpre	



Next	Genera,on	pH	Photometers	
(Low	cost)	

y = 0.0679x2 + 0.8783x + 0.0021 
R² = 0.99715 
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Courtesy	of	R.	Byrne	



New technologies: Autonomous Surface Vehicle (ASVs)

Wave glider and Saildrone


Air-block 

Communications 

Battery 
Electronics 
Calibration gas 

Equilibrator 

Sutton et al. 
2014 ESSD 

PMEL	Carbon	and	Engineering	groups	adapted		
Moored	Autonomous	pCO2	(MAPCO2)	system,	
currently	deployed	at	>50	sites	globally,	into	an	
Autonomous	Surface	Vehicle	CO2	(ASVCO2)	system	
for	a	wave	glider	

Work	of	PMEL	Engineering	and	Carbon	groups.	Contact:	
adrienne.suDon@noaa.gov	

sea	surface	pCO2	and	
pH,	SST,	SSS,	DO	

Courtesy	of	A.	Su\on	



Low power, compact pCO2 optode 

•  Same footprint as Aanderaa 
O2 optode 

•  Fluorescence lifetime based 
•  80 mW at 5 second sampling 
•  Calibration pre and post 

deployment 
 

Atamunchuk et al. 2014 
Courtesy	of	S.	Chu	and	A.	Su\on,	PMEL	
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Emerging	DIC	and	Alk	sensors	
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Robo3c	Analyzer	for	the	TCO2	System(RATS)		
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Channelized	Op3cal	System	(CHANOS)	–	DIC	+	pH	

ü  Two independent channels: spectrophotometric pH 
and DIC

ü  Designed for fixed platforms, e.g. buoys

Uncertain3es:	DIC:	0.8±5.2	µmol/kg		
	pH:	-0.001±0.003	

WHOI	Coast	(2013)	

Sage	Lot	Marshes,	Waquoit	Bay	(2015)	

(Wang	et	al.	2015)	
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CHANOS	II	DIC+pCO2:	AUVs	and	CTD	
Rose\e		
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Based	on	the	MAPCO2	system	design,	for	proof	of	
concept.	

Fassbender	et	al.	ES&T,	2015	

moored	autonomous	DIC	(MADIC)	

Friederich	et	al.	DSR	Pt.	I,	1995	
SuQon	et	al.	ESSD,	2014	
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Courtesy	of	A.	
Fassbender	and	
C.	Sabine	



NSF	#1538580:	Integra3ng	
and	ground	truthing	the	
profiling	float	microrose\e	

IEEE Sensors Journal, 2018.	doi:	10.1109/JSEN.2018.2794882	

Under	controlled	lab	condi,ons,	
DIC	precision	of	<0.2%RSD	or	±4	
µmol/kg		on	sub-milliliter	
volumes	(<250µL).		Working	now	
to	test	in	situ.	



In	situ	measurements	of	total	alkalinity	and	pCO2	on	
Hogs	Reef,	Bermuda	Sept.	2017	(DeGrandpre	et	al.)	
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Net	calcifica3on!		

(DeGrandpre	and	Andersson,	unpubl.)	



Anode	

Gate	

NSF	#1155122	Development	of	
an	ISFET	sensor	for	seawater	
Total	Alkalinity	and	pH	

Reagentless,	low-power,	rapid	coulometric	
3tra3ons	are	now	feasible	using	a	modified	
version	of	the	Honeywell	Durafet	pH	sensor.	
This	results	in	a	combined	pH-TA	
measurement.	



20	

UNH	TA	Analyzer	Project	(TAACT)	
•  Partnership	with	CONTROS	GmbH	

•  Ability	to	assess	(and	maintain)	accuracy		
over	long,	unsupervised	deployments	with	
automated	CRM	checks	

•  Integrated	host	plalorm	data	feed	

•  Simplified	opera,on	for	shipboard	personnel		
(one-buQon	opera,on)	

•  Installa,ons	on	NOAA	RV	Bigelow	(below),	
NOAA	RV	Hi'ialakai,	Mook	Sea	Farms	and	
UNH	Coastal	Marine	Lab	

Joe	Salisbury	and	Chris	Hunt	(UNH)	
Funding	from	NOAA	IOOS	and	OAP	



SEAS-DIC MADIC RATS CHANOS
/CHANOS II

Micro- 
Rosette

Parameters 
measured DIC DIC •  DIC 

•  pH
•  DIC 
•  pH DIC

DIC 
Uncertainty
 (±µmol kg-1 )

2  5.0 2-3 3.0 4

Sampling 
Frequency
(mins)

~1 ~12 6  0.1 10?

Platforms Mooring, 
Buoy

Mooring, 
Buoy

Mooring, 
Buoy
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CTDs,

AUV/ROV
Float

Max Depth ~1000m? Surface 3000m 3000m ~2000m?
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DIC SENSOR TECHNOLOGIES 



SAMI-Alk TAACT Durafet-
coulometry CHANOS-Alk

Parameters 
measured Alk Alk Alk

pH Alk

Alk Uncertainty
 (±µmol kg-1 ) 8.4  2.0 ? 1.0-2.0

Sampling 
Frequency
(mins)

~12 ~10? ~10? ~10

Platforms Mooring, Buoy Underway Mooring, Buoy Underway and lab

Principles Spectrophotomet
ric

Spectrophotomet
ric Coulometric Spectrophotometr

ic

ALKALINITY SENSOR TECHNOLOGIES 
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Summery	

ü  pH	and	pCO2	sensors	are	more	robust	and	
versa,le;	opera,onal	

ü  DIC	and	Alk	sensors	are	improving	

ü  DIC	sensors	seems	to	be	the	next	for	opera,on;	
the	methods	are	rela,vely	robust	(acid,	less	prone	
to	fouling)	

ü  Simultaneous	in-situ	measurements	are	emerging	

ü  Smaller	and	cheaper;	Microfluidic	



Areas that need improvements… 

ü  In-situ calibration or quality control 

ü  High-frequency sensors are limited, and limited 
deployments on mobile platforms (e.g., AUVs, 
profilers, gliders) 

ü  Expert use vs. scientist use 

ü  Reliability: Fouling, pumps, valves, consumables… 

ü  Theoretical issues: e.g., low salinity pH; Org Alk 

ü  Funding the development, but not improvement… 

Thank you! 


