Advancing sensors and technologies for ocean acidification research

Z. Aleck Wang Woods Hole Oceanographic Institution

4th U.S Ocean Acidification PI Meeting Portland, OR February 2018

OCEAN ACIDIFICATION

Hawaii Time-series

Northeast Pacific P17 (Chu et al. 2016)

Challenges for OA Sensor Development

OA signals are analytically small
 ΔpH ~ -0.001 – 0.003/yr; ΔDIC ~+1 – 3 µmol kg⁻¹/yr;
 ΔpCO₂ ~ +1 – 3 µatm/yr
 but depends on what signals you want to detect:
 - Long-term small signal (climatology)
 - Short-term large variability

- Simultaneous measurements of two CO₂ parameters Which pair matters Table 9. Estimated Probable Errors in the Calcula Barameters of the Carbonate System Using Varia
- ✓ pCO₂ and pH sensors are robust and commercially available
- DIC and TA sensors are less mature

Table 9. Estimated Probable Errors in the Calculated Parameters of the Carbonate System Using Various Input Measurements

input	pH	TA (µm ol kg ⁻¹)	TCO2 (μm ol kg ⁻¹)	fco2 (µatm)
pH-TA			±3.8	±2.1
pH-TCO ₂		±2.7		± 1.8
pH-fc02		± 21	± 18	
f_{CO_2} -T $\overline{CO_2}$	± 0.0025	±3.4		
<i>f</i> _{C02} —ТА ТА—ТСО ₂	±0.0026 ±0.0062	Millero 200)7 ^{±3.2}	±5.7

Probability of obtaining a good DIC flux estimate (within 25% of the true mean) for a given tide using different sampling protocols

	12 hrs sampling with a 15 min interval	8 hrs sampling with a 15 min interval	12 hrs sampling with a 60 min interval	12 hrs sampling with a 120 min interval
July 7 to August 11	88%	22%	36%	17%
November 30 to December 18	92%	35%	27%	15%
		Need to sample complete tide	Sampling interval matters	

Measurement frequency and duration matters

Recent Development

New-generation pCO₂ and pH sensors

Deep SeaFET

Sensors operational in difficult environments. WMO #5904468 3 years under ice in Weddell Sea, first biogeochemical record from the Weddell Polyna.

New spectrophotometric pH instrumentation

Sunburst Sensors

XPRIZE supported *i*SAMI pH technology

Courtesy of M. DeGrandpre

Next Generation pH Photometers (Low cost)

Courtesy of R. Byrne

New technologies: Autonomous Surface Vehicle (ASVs) Wave glider and Saildrone

PMEL Carbon and Engineering groups adapted Moored Autonomous pCO_2 (MAPCO₂) system, currently deployed at >50 sites globally, into an Autonomous Surface Vehicle CO₂ (ASVCO₂) system for a wave glider

Work of PMEL Engineering and Carbon groups. Contact: adrienne.sutton@noaa.gov

Courtesy of A. Sutton

Low power, compact pCO₂ optode

Courtesy of S. Chu and A. Sutton, PMEL

- Same footprint as Aanderaa
 O₂ optode
- Fluorescence lifetime based
- 80 mW at 5 second sampling
- Calibration pre and post deployment

"Prawler"

Atamunchuk et al. 2014

Emerging DIC and Alk sensors

Deep-ling Research I he (2000) 1980-1400

Instruments and Methods

An autonomous instrument for time series analysis of TCO₂ from oceanographic moorings

F.L. Sayles **, Calvert Eckb

Robotic Analyzer for the TCO₂ System(RATS)

¹ Superiment of Marine Chronicty and Concilements, MI 4725, Words Heir Concemptable Institution, Words Hole, MI 82543-4544, 854 Million Concemptable Institution, Word, Mill 8254, 1941, 1941

ABSTRACT

The design and testing of a robotic analyzer for autoromous TCD, measurement from consequences to be a set of the set of the statement of the set of the

We report both laboratory and in sits tests of the andpres in the laboratory automated analyses over a period of 38 days at temperatures ranging-from 8° to 25 °C yielded a TCO₂ accuracy and precision of $\pm 2.7 \mu mol/lig. In situ tests were conducted at$ the WHDI dock with a deployment of 8 meets at in situ temperatures of 8°-13°C. Theaccuracy and precision of TCD₂ analyses over the deployment period, based on in situ $calibration, was <math>\pm 3.6 \mu mol/lig.$

Laboratory tests of reagent and standard solution stability are also reported

Environmental Science & Technology

In Situ Spectrophotometric Measurement of Dissolved Inorganic

Carbon in Seawater

Xuewu Liu,[†] Robert H. Byme,^{*,†} Lori Adomato,[‡] Kimberly K. Yates,[§] Eric Kaltenbacher,[‡] Xiaoling Ding,[†] and Bo Yang[†]

¹College of Marine Science, University of South Florida, 140 7th Avenue S., St. Petersburg, Florida 33701, United States ⁸SRI International, 450 8th Avenue S.E., St. Petersburg, Florida 33701, United States

⁶St. Petersburg: Coastal and Marine Science Center, U.S. Geological Survey, 600 4th Street South, St. Petersburg, Florida 33701, United States

O Supporting Information

ABSTRACT: Autonomous in situ sensors are needed to document the effects of today's rapid ocean uptake of atmospheric carbon dioxide (e.g., ocean acidification). General environmental conditions (e.g., biofouling, turbidity) and carbon-specific 2.2

are solved by the sensor cell from biofouling, and the prical path. This instrument, the first spectrophotometric system as DIC to become a key parameter for in sits CO₂ system.

outour course of

Channelized Optical System (CHANOS) – DIC + pH

Sage Lot Marshes, Waquoit Bay (2015)

 Two independent channels: spectrophotometric pH and DIC

✓ Designed for fixed platforms, e.g. buoys

Uncertainties: DIC: 0.8±5.2 μmol/kg pH: -0.001±0.003

(Wang et al. 2015)

National Institute of Standards and Technology U.S. Department of Commerce

moored autonomous DIC (MADIC)

Looking Ahead: A Profiling Float Micro-Rosette

By Philip Bresnahan, Todd Martz, Joao de Almeida, Brian Ward, and Paul Maguire

NSF #1538580: Integrating and ground truthing the profiling float microrosette

Under controlled lab conditions, DIC precision of <0.2%RSD or ±4 µmol/kg on sub-milliliter volumes (<250µL). Working now to test in situ.

FIGURE 1. (left) Prototype Micro-Rosette fastened to bottom of R/V *Sproul's* rosette frame. (right) Conceptual schematic of the Micro-Rosette integrated into a profiling float. For scale, the SOLO-II float has an overall length of 1.3 m (4'4").

Gas Diffusion Cell Geometry for a Microfluidic Dissolved Inorganic Carbon Analyzer

Philip J. Bresnahan, Member, IEEE, and Todd R. Martz

IEEE Sensors Journal, 2018. doi: 10.1109/JSEN.2018.2794882

In situ measurements of total alkalinity and pCO_2 on Hogs Reef, Bermuda Sept. 2017 (DeGrandpre et al.)

(DeGrandpre and Andersson, unpubl.)

500

400

300

200

- 100

pCO₂ (µatm)

Article

pubs.acs.org/acssensors

Time→

Ellen M. Briggs,[†][©] Sergio Sandoval,[‡] Ahmet Erten,^{§,#} Yuichiro Takeshita,^{†,¶}[©] Andrew C. Kummel,[∥][©] and Todd R. Martz^{*,†}

[†]Scripps Institution of Oceanography, [‡]California Institute for Telecommunications and Information Technology (Cal IT2), [§]Electrical and Computer Engineering Department, and ^{II}Materials Science and Engineering, University of California San Diego, La Jolla, California 92093-0244, United States

Reagentless, low-power, rapid coulometric titrations are now feasible using a modified version of the Honeywell Durafet pH sensor. This results in a combined pH-TA measurement.

NSF #1155122 Development of an ISFET sensor for seawater Total Alkalinity and pH

UNH TA Analyzer Project (TAACT)

- Partnership with CONTROS GmbH
- Ability to assess (and maintain) accuracy over long, unsupervised deployments with automated CRM checks
- Integrated host platform data feed
- Simplified operation for shipboard personnel (one-button operation)
- Installations on NOAA RV Bigelow (below), NOAA RV Hi'ialakai, Mook Sea Farms and UNH Coastal Marine Lab

Joe Salisbury and Chris Hunt (UNH) Funding from NOAA IOOS and OAP²⁰

DIC SENSOR TECHNOLOGIES

	SEAS-DIC	MADIC	RATS	CHANOS /CHANOS II	Micro- Rosette
Parameters measured	DIC	DIC	• DIC • pH	• DIC • pH	DIC
DIC Uncertainty (±µmol kg ⁻¹)	2	5.0	2-3	3.0	4
Sampling Frequency (mins)	~1	~12	6	0.1	10?
Platforms	Mooring, Buoy	Mooring, Buoy	Mooring, Buoy	Mooring, Buoy CTDs, AUV/ROV	Float
Max Depth	~1000m?	Surface	3000m	3000m	~2000m?
Principles	Spectrophoto metric	Infra-red	Conductim etric	Spectrophotome tric	Conductime tric

ALKALINITY SENSOR TECHNOLOGIES

	SAMI-Alk	TAACT	Durafet- coulometry	CHANOS-Alk
Parameters measured	Alk	Alk	Alk pH	Alk
Alk Uncertainty (±µmol kg ⁻¹)	8.4	2.0	?	1.0-2.0
Sampling Frequency (mins)	~12	~10?	~10?	~10
Platforms	Mooring, Buoy	Underway	Mooring, Buoy	Underway and lab
Principles	Spectrophotomet ric	Spectrophotomet ric	Coulometric	Spectrophotometr ic

Summery

pH and pCO₂ sensors are more robust and versatile; operational

- ✓ DIC and Alk sensors are improving
- DIC sensors seems to be the next for operation; the methods are relatively robust (acid, less prone to fouling)
- Simultaneous in-situ measurements are emerging
- ✓ Smaller and cheaper; Microfluidic

Areas that need improvements...

- In-situ calibration or quality control
- High-frequency sensors are limited, and limited deployments on mobile platforms (e.g., AUVs, profilers, gliders)
- Expert use vs. scientist use
- Reliability: Fouling, pumps, valves, consumables...
- Theoretical issues: e.g., low salinity pH; Org Alk
- Funding the development, but not improvement...

Thank you!