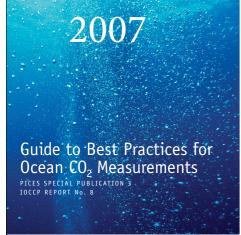

THE FUNDAMENTALS: OA THEORY AND OCEAN CARBON CHEMISTRY MEASUREMENTS

ANDREW G. DICKSON SCRIPPS INSTITUTION OF OCEANOGRAPHY, UC SAN DIEGO



GOA-ON (2014) At each GOA-ON measuring site, a complete description of the seawater carbonate system will be needed.

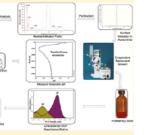
C-CAN (2015) Measurements should facilitate determination of aragonite saturation state (Ω_{arag}) and a complete description of the carbonate system, including pH and pCO₂.

This is also extremely desirable for laboratory OA experiments

TIMELINE FOR CO₂ MEASUREMENT METHODOLGY

۲

Purification and Characterization of meta-Cresol Purple for Spectrophotometric Seawater pH Measurements


Xuewu Liu, Mark C. Patsavas, and Robert H. Byrne*

College of Marine Science, University of South Florida, 140 Seventh Avenue South, St. Petersburg, Florida 33701, United States

Supporting Information

ABSTRACT: Spectrophotometric procedures allow rapid and precise measurements of the pH of natural waters. However, impurities in the acid-base indicators used in these analyses can significantly affect measurement accuracy. This work describes HPLC procedures for purifying one such indicator, meta-cresol purple (mCP), and reports mCP physical-chemical characteristics (thermodynamic equilibrium constants and visible-light absorbances) over a range of temperature (T) and salinity (S). Using pure mCP, seawater pH on the total hydrogen ion concentration scale (pH_T) can be expressed in terms of measured mCP absorbance ratios $(R = \lambda_i A / \lambda_i A)$ as follows

$$pH_{T} = -\log(K_{2}^{T}e_{2}) + \log\left(\frac{R-e_{1}}{1-R\frac{e_{3}}{e_{2}}}\right)$$

where $-\log(K_2^T e_2) = a + (b/T) + c \ln T - dT$; $a = -246.64209 + 0.315971S + 2.8855 \times 10^{-4}S^2$; $b = 7229.23864 - 7.098137S - 0.057034S^2$; c = 44.493382 - 0.052711S; d = 0.0781244; and mCP molar absorbance ratios (e_i) are expressed as $e_1 = -0.007762 + 4.5174 \times 10^{-4}S^2$; $b = -0.007762 + 4.5174 \times 10^{-4}S^2$; b $10^{-5}T$ and $e_3/e_2 = -0.020813 + 2.60262 \times 10^{-4}T + 1.0436 \times 10^{-4} (S - 35)$. The mCP absorbances, $\lambda_1 A$ and $\lambda_3 A$, used to calculate R are measured at wavelengths (λ) of 434 and 578 nm. This characterization is appropriate for 278.15 \leq T \leq 308.15 and 20 \leq S \leq 40.

Contents lists available at SciVerse ScienceDirect Marine Chemistry journal homepage: www.elsevier.com/locate/marchem

Purification of meta-cresol purple and cresol red by flash chromatography: Procedures for ensuring accurate spectrophotometric seawater pH measurements

Mark C. Patsavas, Robert H. Byrne *, Xuewu Liu College of Marine Science, University of South Florida, 140 7th Avenue South, St. Petersburg, FL 33701, USA

2011

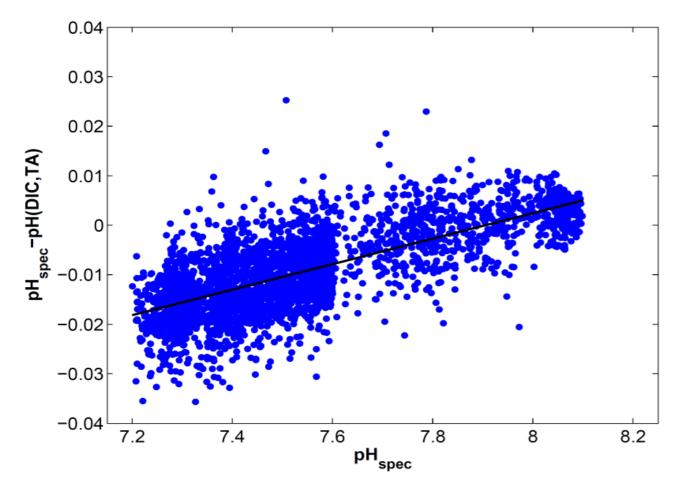
pubs.acs.org/est

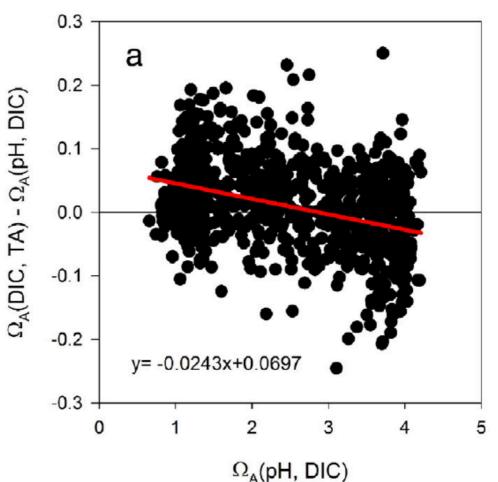
Spectrophotometric Measurement of Calcium Carbonate Saturation States in Seawater

Regina A. Easley,[†] Mark C. Patsavas,[†] Robert H. Byrne,^{†,*} Xuewu Liu,[†] Richard A. Feely,⁺ and Jeremy T. Mathis[§]

Procedures for direct spectrophotometric determination of carbonate ion concentrations: Measurements in US Gulf of Mexico and East Coast waters

Article


2015


Mark C. Patsavas^a, Robert H. Byrne^{a,*}, Bo Yang^a, Regina A. Easley^a, Rik Wanninkhof^b, Xuewu Liu^a

^a College of Marine Science, University of South Florida, 140 7th Avenue South, St. Petersburg, FL 33701, United States ^b NOAA Atlantic and Meteorological Laboratory, 4301 Rickenbacker Causeway, Miami, FL 33149, United States

INTERNAL CONSISTENCY STILL IMPERFECT

Fig. 1. The problem. Example of the pH-dependent pH discrepancy on 2015 P16N. A least squares line fit to the data has a significant non-zero slope and non-zero mean ΔpH .

FongDickson - poster at OSM18

DEFINING OCEAN ACIDIFICATION REQUIREMENTS

GOA-ON (Global Ocean Acidification Observing Network):

Newton J.A., Feely, R.A., Jewett, E.B., Williamson, P., Mathis, J., 2014. Global Ocean Acidification Observing Network: Requirements and Governance Plan. <u>http://goa-on.org/docs/GOA-ON_plan_print.pdf</u>

The *weather* objective requires the carbonate ion concentration (used to calculate saturation state) to have a relative standard uncertainty of 10%.

"*Weather*" Defined as data of sufficient and defined quality used to identify relative spatial patterns and short-term variation. With respect to ocean acidification, this is to support mechanistic interpretation of the ecosystem response to and impact on local, immediate ocean acidification dynamics

GOA-ON WEATHER QUALITY OBJECTIVE

The "weather" goals are achievable provided that the standard uncertainties of measurement for the various carbon system parameters are:

 $u(A_{\rm T}) \sim 10 \ \mu {
m mol \ kg^{-1}}$ $u(C_{\rm T}) \sim 10 \ \mu {
m mol \ kg^{-1}}$ $u({
m pH}) = 0.02$ $u_r(pCO_2) = 2.5\%$

Achievable by "good" labs

Note, these are uncertainties not precisions

Note too that these assume that AT is well understood. Still needs to be addressed.

DEFINING OCEAN ACIDIFICATION REQUIREMENTS

GOA-ON (Global Ocean Acidification Observing Network):

The *climate* objective requires the observed change in carbonate ion concentration (used to calculate saturation state) to have a relative standard uncertainty of $\sim 1\%$.

"*Climate*" Defined as measurements of quality sufficient to assess long-term trends with a defined level of confidence. With respect to ocean acidification, this is to support detection of the long-term anthropogenically-driven changes in hydrographic conditions and carbon chemistry over multidecadal timescales

GOA-ON CLIMATE QUALITY OBJECTIVE

The "climate" goals require that the standard uncertainties of measurement for the various carbon system parameters are:

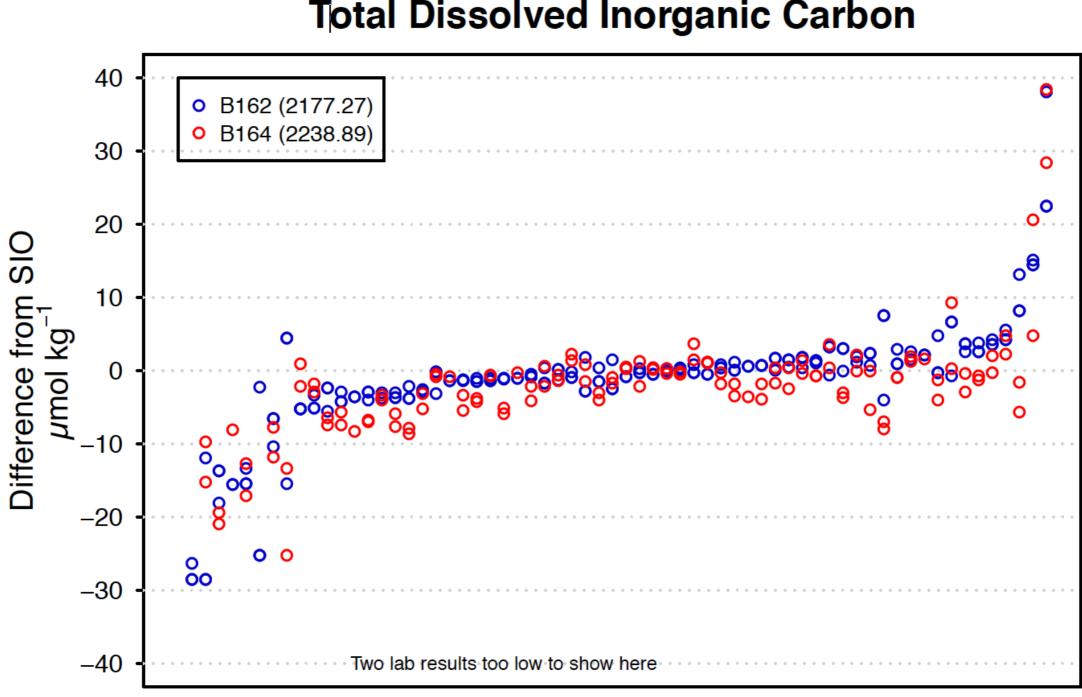
$$u(A_{\rm T}) \sim 2 \ \mu {
m mol} \ {
m kg}^{-1}$$

$$u(C_{\rm T}) \sim 2 \ \mu {
m mol} \ {
m kg}^{-1}$$

$$u(pH) = 0.003$$

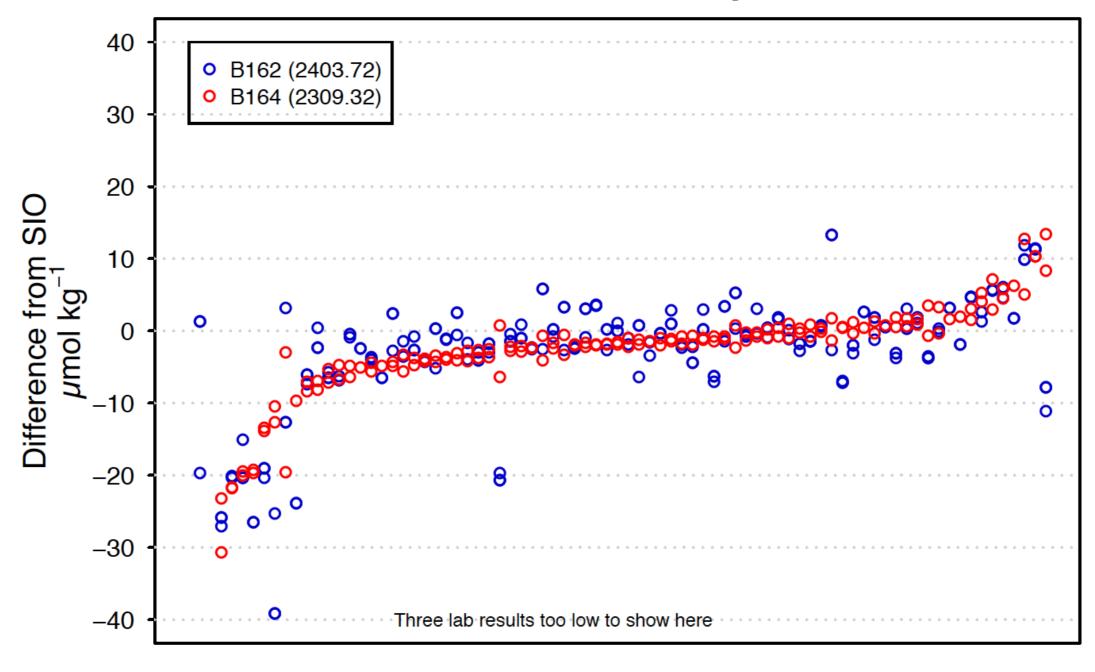
 $u_r(p\mathrm{CO}_2)=0.5\%$

Note, these are uncertainties not precisions

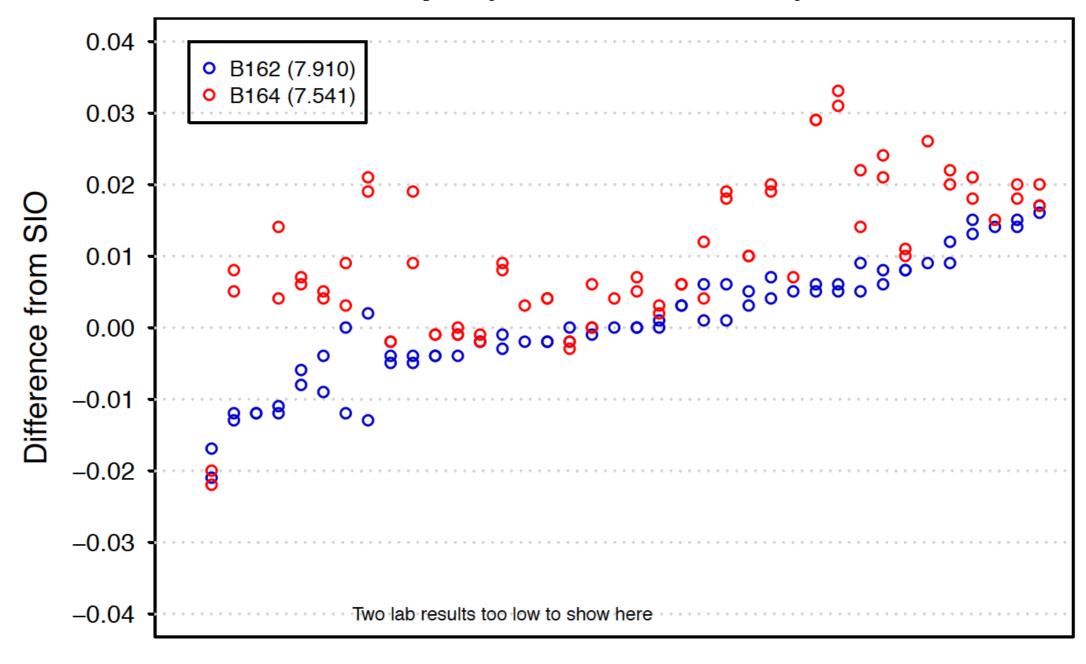

May be achievable by "the best" labs, but see earlier caveat about $A_{\rm T}$

Can these uncertainty requirements be achieved reliably by a wide range of laboratories?

Approach


Two *unknowns* with substantially different CO_2 levels were prepared from natural seawater ($S \sim 33.2$) at the Scripps Institution of Oceanography at UC San Diego. These were bottled; analyzed at Scripps for salinity, total dissolved inorganic carbon, total alkalinity, and pH(25 °C); and then distributed to the various participating labs for analysis using their standard techniques.

Total Dissolved Inorganic Carbon


Instrument (Sorted by Average B162 Difference from SIO)

Total Alkalinity

Instrument (Sorted by Average B164 Difference from SIO)

pH (Total Scale, 25°C)

Instrument (Sorted by Average B162 Difference from SIO)

What is still needed to make OA-related measurements more straightforward?

Needs for the future

Awareness of desirability of defining required uncertainty for OS studies, as well as the need to ensure that it is achieved.

Evaluation of simpler (& cheaper), commercially available systems for CO₂ measurements, including documentation of methods, of necessary training, and of appropriate QC procedures.

Recognition of the need to consider propagation of uncertainty when calculating CO₂ parameters rather than measuring them directly. (Including uncertainties in all the various *constants* considered. (Software exists for this^{*})

*Availability:
via CRAN for seacarb (J.-P. Gattuso)
via Github for CO2SYS-Excel, CO2SYS-Matlab, & mocsy (search for jamesorr)
→ These archives include docs, examples, & interactive Jupyter notebooks