Some Large-Scale Aspects of the Coupled
Ocean-Land-Atmosphere Monsoon System
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Overview

Early thoughts on the physics of the monsoon
Components: Land, ocean and atmosphere and how they interact

Temporal variability of the monsoon: annual, biennial, interannual and
intraseasonal (and subseasonal)

Ocean-atmosphere interaction and the regulation of the monsoon
Domination of the Asian summer monsoon and elevated heating
Some conclusions and ways ahead

| do not have time to talk about biweekly variations of the monsoon and these are
critical subjects and offer extended predictability. A discussion can be found at:

https://www.dropbox.com/sh/hpn9ldozhvvixt7/AADKW1tfRhxoR52MtFfZ9EQyTa?dI=0




Halley’s theory of the monsoon:

Differential buoyancy induced by

land-sea temperature differences

Halley’s great observation was
that in summer, winds were on-
shore. In winter, off-shore. He
noted that this pattern occurred
in certain parts of the world and
not in others. His explanation:

“...action of the Sun’s Beams
upon air and water ..according
to the Laws of Staticks, air which
is less rarified or expanded by
heat must have a motion
towards those which are more
rarified to bring it to an
equilibrium ...” (Halley 1686)
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OCEAN AND ATMOPSPHERE: Precipitation, 925 hPa Winds and Ocean Currents
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Asian Monsoon as a Vast Solar Collector: Moisture Transport

VERTICALLY INTEGRATED MOISTURE FLUX (3 10° kg mis ﬁ)

JJAS
: S

\\\\\
P )\ N

T 4
ARN

1t

7
@
' 7
) [

A
I

T
(A

/

f
’/‘

VA

B, = _[:q(z)V dz

]

/

& 117

. At 7
g 11 A

[Ths
et ?

15 0

LA
L

. 1
150°E

S Wi
< V!
Vi
1y
o
S
=
s
/
/
/
1
(=}
/
/
o
Q i
m 4
i
=]
SR
m
[
[}
Iy
I
[y
"
> |
S
=
N
P
=
3 —
= i
N
—
=
E

(3x10 kg m/is —>)

V(2) q(2) V(z)q(2)

; eE B, is dominated by low level
 Wiasaston JNE SR moisture and wind field

/)Q‘-»

100°W 50°W 0° 50°E 100°E 150°E 160°W

» Surface evaporation of flow over ocean by Halley’s monsoon winds causes
convergence of moisture.
* Major question why is moisture flux in North Indian Ocean so
extraordinarily large compared to other regions?
Fasullo and Webster 2002



A Unique feature of South Asia is the Himalayan-Tibetan Plateau (HTP)

60N -

40N -

In essence, this is
Halley plus where
differential
buoyancy is
exaggerated by
elevation.

In a series of articles in the 1950s-70s, Prof. Herman
Flohn argues that the anomalous strength of the
Asian monsoon was the result the elevated heating
of the HTP

(see recent review Wu, et al 2015, National Science
Review) 7



Variability of the Monsoon

Time Scales and Patterns of OLR Variability in the Tropics (Ortega et al. 2016)

(a) JJA - 2to 10 day Variance
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Note overlapping patterns of high variance. There appears to be strong
relationships between the various variance bands.



Interannual Variability of the Indian Monsoon
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Intraseasonal Variability of the Indian Monsoon (MISO)

(a) Central India pentad GPI rainfall for 1986-2002 = S
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(b) Central India pentad GPI rainfall for 1999-2002
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morthward propagations (Sikka & Gadgil 1981)

30—

15—

1976

J\.

1975

Y% \ J

1974

W -

1973

Intraseasonal oscillations are principally
northwardly propagating bands that
extend well beyond the Asian region.

They also have a distinctive ocean signal
as we shall see later.
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Rainfall in the
monsoon has distinct

periodicities with

broad sub-seasonal
bands (20-40 days, 8-

14 days)
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Modal Inter-dependence

Three major time scales of
precipitation in monsoon system
(upper panel):

* Diurnal

e Synoptic (4-14 days) or quasi-
biweekly

* Intraseasonal Oscillation (20-40
days).

These three phenomena are
interrelated with their maximum
convective phases occurring at the
same time (lower panel).
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Cooperative Ocean-Atmosphere Dynamics

Positive feedback:

Warm summer hemisphere SSTs and heating over
land produce cross-equatorial pressure gradient
that transports moisture from the winter to the
summer hemisphere. Latent heat release
exacerbates the latent heat over the heated land.
Increased subsidence allows SST to rise Pressure
gradient increases and etc.

Negative feedback:

Near surface winds produce Ekman transport from

and the Regulation of the Monsoon
G ——360—> H<190-|
oy S At == fﬁ;ﬁ“;;fwss;
N \ ﬂ;:*_",".*?"'fi’?
A h\\m?:: -
500 - LTl XEN NN
R NT/ZRRziiice
700-f— - —==%; ;- Q;/;‘::::::-
mof | == i
oo I —————— — T = ]
1Y Y
¥ )
90S 60S 60N 90N
(i) non-rotating (i) rotating

the summer to the winter hemisphere, reducing

the SST gradient and reduces the intensity of the

monsoon.
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In combination, these processes regulate the

intensity of the monsoon on intraseasonal and

-
[9)]

°
2]

interannual time scales, keeping its amplitude
within rather narrow bounds
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Negative & Positive Feedbacks: Interannual time scales

(a) Mean annual cycle of heat budget of North Indian Ocean (PW)
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(b) Zonally averaged ocean heat flux (PW): Climatology

surface flux
(b) SPRING
layer 1
transport
layer 2
EQU surface flux
SUMMER

layer 1

transport

layer 2

NS IR S

EQU
WINTER

layer 1

transport

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

-_— I
-2 -1 0 1 2

of the monsoon.
monsoon.

Loschnigg & W, 2000, Chirokova and W 2010.
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Note that surface wind strength and counter Ekman transport depend on strength
Note meridional atmospheric heat transport depends on strength of the

Meridional ocean heat transport almost counters meridional latent heat flux
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Oceanic Cross-equatorial Ekman Transports

It may seem counter-intuitive
that wind-driven Ekman

transports are responsible for
the counter oceanic heat flux.

Ekman drift goes@s /fso
there should be a singularity
at the equator.

Miyama et al. (2003) have
shown this not to be the case
and that singularity is
removable!

Also, the spin up/down time
scale goes as 1/f so that a SH
profile will be advected across
the equator. This is shown in
the figure on right.
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power spectrum (1 0'3)

power spectrum (1 0'4)

Spectra of the cross-equatorial flux of heat
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e Cross-equatorial ocean
flux of heat has a strong
biennial peak

e This peak (both found in
observations and
models) is a sign of the
variability of the
monsoon within rather
narrow bounds

Monsoon rainfall spectra
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Annually Averaged and Anomalous Oceanic Heat Transports fn(latitude)

. PW
Total annually 20 . 0 0.0
averaged heat flux as 10ET A\ \Wa ' \ [ ' 01
a function of latitude. § &\ | 02
Long term average is 5 0 03
negative with values = 108 04
of 0 to -0.6 PW -20 A 05
= Ul - ) ; ; i N P S 06
Subtracting out Iong- 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98
term annual average (a) Anomalous annually averaged meridional transport
heat flux.

Note that anomalies
are about 20-30% of
annual average, show
strong bienniality and
that the signals are
coherent between
20°N and 20°S

[atitude
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Regulation of the monsoon annual cycle

Latitude

Boreal Summer Boreal Winter
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Northward ocean heat transport of 1.5 PW

Southward ocean heat transport of 1.5 PW
(cools SIO while warming NIO)

(cools NIO while warming SIO)

Overall impact of wind-driven Ekman ocean heat transport is to cool the summer
hemisphere and warm the winter hemisphere thus reducing the cross-equatorial

SST gradient and minimizing seasonal extremes in the monsoon
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MODULATION OF INTERANNUAL VARIABILITY IN THE MONSOON

STRONG MONSOON WEAK‘ MQNSOON
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!

Bienniality produced into monsoon system
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Biennial Regulation of the South Asian Monsoon

(a) Biennial regulation with local mixing (Meehl 1994, 1997)

(b) Biennial regulation with ocean transport (Webster et al 2002)

ANOMALOUS ATMOSPHERIC FLOW AND MERIDIONAL HEAT TRANSPORT
MAM:1 SON:1 MAM:2 SON:2

n/s transport

A warm

JJA:1 DJF:1 JJA:2 DJF:2
weak weak strong strong
summer winter summer winter

monsoon monsoon monsoon monsoon 21



Anomalous lower tropospheric
wind fields associate with
strong/weak monsoons defined
by +/-1 sd precipitation
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Anomalous Near-surface Winds and Up/Downwelling
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When the monsoon is strong, enhanced upwelling (cooling) in
west, downwelling (warming) in east.

Setting up dipole structure (Indian Ocean Dipole) and explains
its biennial time scale and its phase-locking with annual cycle.. =



Generation of the Indian Ocean

Dipole (differential upwelling + 20°N

feedbacks) 10°N
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Dipole is set up by enhanced/decreased monsoon strength.

reduced
upwelling

-

increased
upwelling

Strong-Weak Monsoon Near-Surface Winds
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COMPOSITE MONSOON REGULATION SYSTEM
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Zonally Averaged Climatological and Intraseasonal
Meridional Heat Flux in Indian Ocean

Zonally intergrated ocean heat flux (PW)
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Each “pulse” corresponds to the meridional propagation of a monsoon intraseasonal
event. Intraseasonal variability very important in heat balance of the monsoon system 7



Conclusions so far:

 Monsoon is a coupled ocean/atmosphere system

* Halley-like driven winds produce strong moisture
convergence and latent heat release driving stronger winds

e (Can conjure up mechanisms for regulation of the monsoon
system with coupled o/a dynamics.

Thus, if we want to predict the behavior of the monsoon on all
time scales, we need a coupled ocean-atmosphere model.

 Also we need a model that handles orography properly.....
As the Himalayan-Tibetan Plateau (HTP) features mightily
in mosoon dynamics.
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The Himalaya-Tibet summer “hot tower”

(a) Mean upper-tropospheric temperature
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The Himalaya-Tibet summer “water tower”
DJF Specific Humlﬂy Anog (g/kg) 500-300 hPa
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pressure (mb)

(a) Tropospheric temperature change relative to May 1
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Upper-tropospheric potential vorticity field

@) Boreal winter

“Great yellow
eye” or yellow
spot!

* During the boreal summer, the PV on fields are dominated by an
anticyclone center over south Asia on the scale of 10,000 km and a
corresponding Pacific trough. A weak counterpart exists over the

Rockies. No counterpart exists in the austral summer.
Ortega et al (2015)
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Mean JJIA SNK PV ron 1960 © 2013 ERA-merim data

Ortega et al 2015
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e System is unstable (Hsu & Plumb z4 Wu et al 2015
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(iii) June
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HTP Analyses Using High Altitude
Reanalysis (Maussion et al. 2010)

 Mean April, May and June
surface winds and % of annual
precipitation falling during each
months.

* Note the early formation of the
surface trough on the surface of
the HTP well prior to the onset
of the monsoon over India

* Aclosed cyclonic circulation
forms in May when 10-20% of
the annual precipitation occurs.

* InJune the cyclonic circulation is
stronger and up to 25-35 % of
the total rainfall occurs. Precip in
the foothills is now occurring.

* Analysis fits well with the
hypothesis of Prof. Hermann
Flohn.
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Quasi-biweekly oscillation around the monsoon
gyre

Breaking

Rossby waves
Y Rossby waves
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Reminder of the importance _ Synoptic
. . . diurnal QBW  MISO
of bi-weekly variability in 4

monsoon

|
|
|
|
Three major time scales of :
precipitation in monsoon system
(upper panel):
* Diurnal
* Synoptic (4-14 days) or quasi-
biweekly
* Intraseasonal Oscillation (20-40

N W s O

Variance (%)
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1 10 100
Period (days)

(a» ] —
™I Y i

-
days). L
These three phenomena are E
interrelated with their maximum —
: _ ©
convective phases occurring at the ‘& i
. ‘© 3
same time (lower panel). o -0.4| diurnall |
0.6

110 120 130 140 150 160
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GLOBAL DISTURBANCES and INSTABILITY OF MONSOON ANTICYCLONE

(a) 25N to 35N (b) 15N to 25N (c) 5N to 15N

',, eastward propagatlon

-

e

) 1 h
0 120 240 0 120 240 0 120 240
Longitude Longitude Longitude

Upper troposphere dominated by westward propagation in period where
IPV gradient reverses.
Are these oscillations relevant to precipitation events in tropics
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Summary: The transient monsoon

Elevated heating of the HTP creates planetary scale
anticyclonic gyre expanding over 180° longitude

Gyre is dynamically unstable and breaking waves are
advected anticyclonically around the gyre, originating in
the extratropics and extending deeply into the tropics.
These upper tropospheric disturbances appear to be
associated with westward propagating rainfall events that
impact South Asia.

They also appear to generate westward propagating
waves that exist on a global scale in sharp contrast to the
boreal winter when propagation is to the east.
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Another important “land” effect: Deserts

* Rodwell and Hoskins (1996) noted the importance of deserts in determining the
intensity monsoons.

* Early results (Smith, 1986, Johnson 2002, Blake et al 1983) from the MONEX
“Empty Quarter” Experiment in 1979 showed strong adiabatic descent emerging

from desert region where there existed strong cooling to space. Balanced by
adiabatic warming.

(a) Daytime (b) Nighttime (pre-dawn)
-l - * Very strong diurnal variation
o | c 0 e Surface low forms during
w | w0 daytime.

g

500

e Lateral “exhaust” of

/ . .

/ downwelling air expands
laterally over the Arabian Sea

both day and night.

pressure (hPa)
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Pressure (hPa)

Lateral exhaust extends eastwards along isentropes extending over the Arabian
Sea. This extension creates an inversion that (i) renders the flow across the
equator inertially stable (Toma and Webster 2010) and also reduces convection.

(i) Isentropes along 15°N (JJA: section A-A)

30°N

20°N

L o ]
1000 X, \/ ///J‘;\ ./ 10°5

30 40 50 60 70 80 30°E 45°E 60°E 75°E 90°E

Longitude (east)

* Note the restriction of isohyets (mm/day: red dotted contours) to the central and

western Indian Ocean.
e Clearly, to understand monsoon dynamics, there is a need to understand the

physics of neighboring deserts and their influence, as well as their own dynamics.
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Summary:

| have attempted to:
* Describe the components of the South Asian summer monsoon:
» Land (elevated and desert), ocean and atmosphere.
 Emphasized the coupled nature of the components and how
they interact to produce the characteristic temporal scales

* Hinted at the mechanisms that produce higher frequency
variability

* Attempted to underline the necessity of understanding the
coupled phenomena in order to predict it.

* | am of the opinion that if one is contemplating field expeditions
or numerical experimentation that we are now well-set to ask
the right questions. And, perhaps, be able to say something
worthwhile about the monsoon in a changing climate.

Because of time limitations, | have given short-change to the physics of sub-seasonal
monsoon variability. Much has been learned and our predictability potential is gaining

strength. There is much more at:
https://www.dropbox.com/sh/hpn9ldozhvvixt7/AADKWtfRhxoR52MtFfZ9EQOyTa?d|=0







