

THE GLOBAL OCEAN SHIP-BASED HYDROGRAPHIC INVESTIGATIONS PROGRAM

www.go-ship.org
usgoship.ucsd.edu
cchdo.ucsd.edu
www.jcommops.org

GO-SHIP: into the second decade (2012-2023) of global repeat hydrography

Lynne Talley, Scripps Institution of Oceanography Co-chair, U.S. GO-SHIP; Member GO-SHIP Exec.

IIOE-2 workshop, Sept. 11, 2017 Scripps Forum

GO-SHIP program

- 'Reference standard': Accurate, full ocean depth measurements of full physical and biogeochemical (carbon and some NCP) system
- Adequate to discern interdecadal (5-10 years) evolution of carbon, heat, freshwater, oxygen, nutrients, tracers
- Calibration standards for all other water column projects, including Argo, BGC-Argo, Deep Argo, OOI, GO-SHIP associated hydrography

S. Howell (U. Hawaii)

GO-SHIP is part of the Global Climate Observing System/ Global Ocean Observing System GCOS/ GOOS

Reference Sections

High frequency GO-SHIP (reduced requirements with decadal full GO-SHIP occupation)

Decadal full GO-SHIP occupation (all requirements)

GO-SHIP associated line (GO-SHIP similar requirements off regular lines)

GO-SHIP utility

Use GO-SHIP as a deployment platform for biogeochemical floats, So with shipboard verification of Calibrations

Map from www.jcommops.org (August, 2017)

Biogeochemical Argo

Annual Review of Marine Science

Annual Review of Marine Science, 8, 19.1-19.31, 10.1146/annurev-marine-052915-100829, 2016.

Changes in Ocean Heat, Carbon Content, and Ventilation: Review of the First Decade of Global Repeat Hydrography (GO-SHIP)

L.D. Talley,¹ R.A. Feely,² B.M. Sloyan³, R. Wanninkhof,⁴ M.O. Baringer,⁴ J.L. Bullister,² C.A. Carlson,⁵ S.C. Doney,⁶ R.A. Fine,⁷ E. Firing,⁸ N. Gruber,⁹ D.A. Hansell,⁷ M. Ishii,¹⁰ G.C. Johnson,² K. Katsumata,¹¹ R.M. Key,¹² M. Kramp,¹³ C. Langdon,⁷ A.M. Macdonald,⁶ J.T. Mathis,² E.L. McDonagh,¹⁴ S. Mecking,¹⁵ F.J. Millero,⁷ C.W. Mordy,^{2,16} T. Nakano,¹⁷ C.L. Sabine,² W.M. Smethie,¹⁸ J.H. Swift,¹ T. Tanhua,¹⁹ A.M. Thurnherr,¹⁸ M.J. Warner,²⁰ and J.-Z. Zhang⁴

GO-SHIP science highlights

Rate of temperature change below 4000 m from repeat hydrography. Stippled areas are where change is not significant.

Results: Ventilation signals (CFC tracers)

 Time history of anthropogenic transient tracers in the atmosphere: chlorofluorocarbons, SF₆ and tritium

Visualization of the Indian overturn: CFC-11 changes

Invasion of CFC-11 marks deep ventilation pathways.
Lack of invasion may mark southward IDW pathways
Enhancement of upper ocean CFC-11 marks subtropical circulation.

Indian vs. Pacific changes 2002/03 to 2009 in heat and FW transport: GO-SHIP

Indian: shift to warmer, lower density, probable reduction in deep overturn Southward heat transport in Indian/Pacific doubled, associated with ocean warming

Heat transport change

Indian HT increased by 0.6 PW Pacific HT increased by 0.2 PW

S041

Freshwater transport change

Indian FWT increased from 0.2 Sv by 0.3 Sv Pacific FWT increased from ~0 in 2002 (historical Overturning Streamfunction

value) to 0.2 to 0.3 P01 P02 P03 P13 P29 E13

MUCH WARMER

Evaporation increased

WARMER

Evaporation increased from net ~0

S04P

Changes in Heat transport Freshwater transport

Hernandez-Guerra and Talley (PiO,2016)

P17E-P19C

GO-SHIP Chemistry/Biology Objectives in the Indian Ocean (Richard Feely)

- ◆ Determine Decadal Changes in Anthropogenic CO₂ Uptake
- ◆ Determine Decadal Changes in Nutrient and Oxygen Distributions
- ◆ Determine Decadal Changes in pH and Aragonite Saturation State
- ◆ Determine Decadal Changes in Biogeochemistry and Biology

Results: Anthropogenic carbon

 Estimate of current Anthropogenic CO₂
 Distributions

Total 2008Inventory: 140 ± 25Pg C

 ~ 6% (8.2 Pg C) stored in Marginal Seas (including the Arctic)

Khatiwala et al. (2013

Results: Ventilation signals (Oxygen, CFCs) GO-SHIP minus WOCE (2007 minus 1995)

Southern
Hemisphere
subtropical gyres
were more
strongly
ventilated in
2000s than in
1990s, opposite
to Northern
Hemisphere and
tropical oxygen
minimum zones

Surface pH change

Estimated pH change from pre-industrial to present, using GLODAP and WOA05

Surface ocean acidification

Changes in Aragonite Saturation of the World's Oceans, 1880–2015

Feely et al. (2009) updated in 2016

Change in aragonite saturation at the ocean surface (Ω_{ar}):

Data source: Woods Hole Oceanographic Institution. 2016 update to data originally published in: Feely, R.A., S.C. Doney, and S.R. Cooley. 2009. Ocean acidification: Present conditions and future changes in a high-CO₂ world. Oceanography 22(4):36–47.

For more information, visit U.S. EPA's "Climate Change Indicators in the United States" at www.epa.gov/climate-indicators.

Change in aragonite saturation along 95°E (I8S/I9N) 1995 to 2007

(ocean acidification)

0 CEAN

Results: Dissolved Organic Carbon

Measurement requirements of GO-SHIP: Level 1 variables [Required] profiles to ocean bottom

(All data are to be released in final form 6 months after the cruise)

- Dissolved inorganic carbon (DIC)
- Total Alkalinity (TAlk)
- •pH
- •CTD pressure, temperature, salinity (calculated)
- CTD oxygen (sensor)
- Bottle salinity
- •Nutrients by standard auto analyzer (NO₃/NO₂, PO₄, SiO₃)
- Dissolved oxygen (Winkler)
- •Chlorofluorocarbons (CFC-11, -12, 113) and ${\rm SF_6}$

- •Surface underway system (T, S, pCO₂)
- ADCP shipboard
- ADCP lowered
- Underway navigation and bathymetry
- Meteorological.

Measurement requirements of GO-SHIP: Level 2 variables [Highly Desired]

(All data are to be released in final form 6 months after the cruise)

- Discrete pCO₂
- ¹4C by AMS
- CCI₄
- ∂¹3C of DIC
- N₂O
- 3H/3He
- Fe/trace metals
- CTD Transmissometer
- Surface underway system (nutrients, O₂, Chl, skin temperature, pH, DIC, TAlk).
- Dissolved organic carbon (DOC)
- Dissolved organic nitrogen (DON)

Measurement requirements of GO-SHIP: Level 3 variables [All additional programs]

(All data are to be released in final form within 2 years of analysis)

Examples include, but are not limited to, microstructure/turbulence; chlorophyll; Primary production; HPLC pigments; Experimental continuous analyzers; ∂₁₅N; NO₃; ₃₂Si; ∂₁₈O of H₂O; NH₄; Low level nutrients; Total organic phosphorus; Upper ocean optical; isotopes of O₂; N₂, Ar, O₂; Methyl halides; DMS.

GO-SHIP Associated

As of September 2015:

Repeat hydrographic sections along regular GO-SHIP lines and not necessarily coast-to-coast or coast-to-ice, that:

- deliver high quality data,
- establish full depth stations below 2000m at least every 240nm,
- are repeated on decadal frequency or more, with at least once per decade sufficient level 1 parameters to determine decadal changes in inorganic carbon and heat,
- at a minimum resolution of 60nm, and
- comply with the data policy.

GO-SHIP data management

https://cchdo.ucsd.edu

Online data sets satisfying the data delivery requirement

Current Status of Decadal Survey

GO-SHIP Status of 2012-2023 Survey (61 Lines) May 2017

Bold lines: High Frequency (reduced requirements) Thin lines: Decadal GO-SHIP (full requirements)

Current Status of Decadal Survey: Indian Ocean

Section	Locatio n	Country	Year
SR3	150E	Australia	2018
17N	60E	US	2018
15	32S	US	2019
I7S	55E	Japan	2019
I8N	80E	Japan	2019
198	110E	Australia	2020
I6S	40E	US	2020

Uncoming & Funded

			Recently completed]		
		Unplanned		Section	Locatio n	Country	Year
Section	Loca		y Year	S4I	60S	Japan	2012-2013
	n		, 10 sii	l10	110E	Japan	2015
I01W	8N	?	?	I8S	95E	US	2016
I01F	8N	?	?	I9N	95F	US	2016

Current Status of Decadal Survey: Indian Ocean

Associated

Section	Locatio n	Country	Year
Marion	Agulhas	South Africa	annual
<i>17</i> S	55E	India	annual

Potential associated?

Region	Location	Country	Year
ISS1, S4I	SW Indian/Ker guelen	France Australia	Annual
Prydz Bay	Prydz Bay	China	Annual
Others?		?	?

I7N plans (funded, U.S., Feb-March 2018)

RV Ron Brown NOAA funding Denis Volkov, Chief Sci Vivianne Menezes, Co-Chief Sci.

I7S, I8N plans (funded, Japan, 2019)

Mirai (Japan)
JAMSTEC funding.

Associated GO-SHIP: Marion Isl. (S. Africa) and I7S (India) Follow GO-SHIP data management.

Other candidates? Might be an excellent outcome of IIOE-2.

Agulhas II every year

India NCAOR funding. Agulhas I this year and last

Cruise track for SOE 2017-18

Map showing the tentative cruise transect for the Indian Expedition to So Ocean/Antarctic waters 2017-18. The yellow circle indicates the location (40 .5°E) of sediment trap mooring deployed during

IIOE-2 discussions?

- Some way to implement I01E? I01W off table due to security?
- Other associate sections, or even just using the cchdo.ucsd.edu data management system for cruise data, declaring a data set that is "IIOE-2"
- Piggyback projects that require no additional wire time (Argo, BGC-Argo, Deep-Argo, drifters, etc. being deployed; underway observations, additional chemistry/biology from water samples, microstructure proxy measurements, etc)

