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Detrital sediment in Florida's (USA) submerged cave systems may preserve records of regional climate and
hydrologic variability. However, the basic sedimentology,mineralogy, stratigraphic variability, and emplacement
history of the successions in Florida's submerged caves remains poorly understood. Here we present stratigraphic,
mineralogical, and elemental data on sediment cores from two phreatic cave systems in northwestern Florida
(USA), on the Dougherty Karst Plain: Hole in the Wall Cave (HITW) and Twin Cave. Water flowing through
these caves is subsurface flow in the Apalachicola River drainage basin, and the caves are located just downstream
from Jackson Blue (1st magnitude spring, N2.8 m3 s−1 discharge). Sedimentation in these caves is dominated by
three primary sedimentary styles: (i) ferromanganese deposits dominate the basal recovered stratigraphy,
which pass upsection into (ii) poorly sorted carbonate sediment, and finally into (iii) fine-grained organic
matter (gyttja) deposits. Resolving the emplacement history of the lower stratigraphic units was hampered by a
lack of suitablematerial for radiocarbondating, but the upper organic-rich deposits have a punctuated depositional
history beginning in the earliest Holocene. For example, gyttja primarily accumulated in HITW and Twin Caves
from ~5500 to 3500 cal yr. BP, which coincides with regional evidence for water-table rise of the Upper Floridian
Aquifer associatedwith relative sea-level rise in the Gulf of Mexico, and evidence for invigorated drainage through
the Apalachicola River drainage basin. Gyttja sedimentswere also deposited in one of the caves during the Bølling/
Allerød climate oscillation. Biologically, these results indicate that some Floridian aquatic cave (stygobitic) ecosys-
tems presently receive minimal organic matter supply in comparison to prehistoric intervals. The pre-Holocene
poorly sorted carbonate sediment contains abundant invertebrate fossils, and likely documents a period of en-
hanced limestone dissolution and cave formation (speleogenesis) during lower paleo water levels. Further work
is still required to (a) determine whether precipitation of the ferromanganese deposits is inorganically or biolog-
ically mediated, (b) temporally constrain the emplacement history of the primary sedimentary styles, and
(c) determine the full geographic extent of these sedimentary signals. However, these preliminary observations
suggest that sedimentation in the inland underwater caves of northwestern Florida is related to Quaternary-
scale hydrographic variability in the Apalachicola River drainage basin in response to broader ocean and atmo-
spheric forcing.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Carbonate rocks cover ~12% of the ice-free global surface, and ~25%
of the global population is reliant upon freshwater in karst aquifers
(Ford andWilliams, 1989). However, there remains a poor understand-
ing of how karst aquifers respond to external forcing over millennial
timescales, and global freshwater resources are increasingly threatened
by climate change and anthropogenic development. Sedimentation in
nces, Texas A&M University at

um).
flooded cavesmay provide ameans for assessing the long-termbehavior
of carbonate aquifers.

In Florida, expansive carbonates were deposited during Oligocene
and Eocene sea-level highstands that have since become heavily
dissolved into a mature karst landscape with ubiquitous sinkholes,
karst windows, and flooded cave systems. Several regional climate
records (Watts, 1969; Grimm et al., 1993; Watts and Hansen, 1994;
Quillen et al., 2013) and sedimentological studies (Bates et al., 1995;
Shinn et al., 1996; Filley et al., 2001; Lane et al., 2011; Brandon et al.,
2013) have been focused on Florida's sinkhole sediments, but few stud-
ies have examined the sedimentary deposits in Florida's underwater
caves and sinkholes to inform regional aquifer development. Alverez
Zarikian et al. (2005) used ostracodes preserved in Little Salt Spring to
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examine Holocene-scale development of the Upper Floridian Aquifer.
Rupert (1991) examined five short push cores collected from the
Wakulla Cave System that contained fine-grained carbonate mud and
quartz-sand beds (Fig. 1), but resolving their emplacement history
was hampered by little chronological control. Martin and Harris
(1992) examined the clay mineralogy in three surface sediment
samples from Peacock, Telford, and Madison Blue Springs, and
Streever (1996) documented organic matter accumulation rates of up
to 80 g m−2 yr.−1 in Sim's Sink Cave. Additional stratigraphic studies
are still required to determine the relationship between sediments in
Florida's flooded caves and regional ocean and atmospheric forcing.

Here, we present a stratigraphic analysis of two inland phreatic
caves on the Dougherty Karst Plain in northwestern Florida (Fig. 1).
The objectives of this study were to (i) investigate how sediment
mineralogy and texture varies through time, (ii) examine the subsur-
face stratigraphy and lateral continuity of primary sedimentary units;
and (iii) investigate possible temporal relationships between sedimen-
tation, aquifer hydrodynamics, and regional climate change. In short,we
recovered ferromanganese deposits from deeper in the stratigraphic
record that pass upsection into mixed carbonate sediment and organic
matter deposits. Although much remains to be learned, sedimentation
in these caves appears linked to water-table rise in the Upper Floridian
Aquifer and hydrographic development of the Apalachicola River
drainage basin since the last glacial maximum.

1.1. Sedimentation in phreatic caves

Research on underwater cave and sinkhole sediment has significant-
ly expanded in the last several decades from the realization that these
Fig. 1.Map of themajor watersheds, streams, deltas, andmajor geomorphic districts in norther
stream Merrit's Mill Pond (yellow star). Base maps, streams, and the borders of six major d
hydrographic databases (Lehner and Grill, 2013), and plotted using GeoMapApp software (h
Floridian aquifers (solid greyscale) is based on a map created by Kurz et al. (2015), as modi
aquifer is confined (darkest grey) is locally known as the Cody Scarp. Borders of highly karst
derived from a map by Green et al. (2009). Springs and lakes that have been utilized in pal
include: Goshen Springs (Delcourt, 1980; Grimm et al., 1993), Camel Lake (Watts et al., 1992
(Brown et al., 2014), Ginnie Springs (Gulley et al., 2013), Sheelar Lake (Watts, 1980), and Thor
deposits can preserve records of paleoceanography (Yamamoto et al.,
2010; van Hengstum et al., 2015a), tropical cyclone variability (Lane
et al., 2011; Brandon et al., 2013; Denomee et al., 2014; van Hengstum
et al., 2014), long-term groundwater conditions and salinity (Teeter
and Quick, 1990; Teeter, 1995; Alverez Zarikian et al., 2005; Gabriel,
2009; van Hengstum et al., 2010; Quillen et al., 2013), millennial-scale
terrestrial–oceanic climatic connectivity (Grimm et al., 1993), glacial–
interglacial climate oscillations (Larsen and Mangerud, 1989), vertical
sea level and water level change (van Hengstum et al., 2011; Collins
et al., 2015a), and precipitation variability (Wurster et al., 2008; Polk
et al., 2013; Onac et al., 2015). However, many questions still surround
their millennial-scale sedimentary processes because few flooded caves
have received detailed sedimentary reconstructions.

The most significant environmental parameter influencing cave
sedimentation is arguably the position (elevation) of the water table
with respect to the conduit (in the vadose versus phreatic zone).
Inundation by base level due to sea-level rise controls many cave
sedimentary processes, and it changes the sedimentary structures that
may be generated or preserved in the stratigraphic record. As such,
sedimentary deposits and structures (both primary and secondary)
can be associated with phreatic versus vadose environmental condi-
tions in the cave (Springer and Kite, 1997; Springer et al., 1997; van
Hengstum et al., 2011; Fornós et al., 2014). For example, mud cracks
indicate when pre-existing cave sediment has been desiccated under
vadose conditions (Fornós et al., 2009; Fornós et al., 2014). Of course,
inundation does not necessarily initiate sedimentation in caves,
as caves are often dependant upon external sediment supplies
(Fornós et al., 2014; van Hengstum et al., 2015b) or conduit geometry
(Collins et al., 2015a). For example, a submarine cave at 210 m BSL on
n Florida, USA. Hole in theWall (HITW) Cave and Twin Cave are located along the surficial
rainage basins are modified from multi-resolution topographic (Ryan et al., 2009) and
ttp://www.geomapapp.org). Differentiation of confined, semi-confined, and unconfined
fied from Frydenbourg (2006). The interior border delineating where the upper Florida
ified geomorphologic districts (constrained by purple, red and yellow dashed lines) are
eoclimate, hydrologic, and geologic studies that are referenced herein (yellow circles)
), Wakulla Springs (Rupert, 1988, 1991), Mud Lake (Watts, 1969), Madison Blue Spring
nton's Cave (Florea et al., 2011).
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Johnston Island (Central Pacific) contains no sediment (Keating, 1985),
and Holocene sedimentation in someMexican (Yucatan) phreatic caves
was initiated by emplacement of mangroves on the epikarst surface
(Collins et al., 2015b). The spatial position of the cave system relative
to the ocean can further complicate sedimentary interpretations. This
is because the position of the water table in the coastal zone is linked
to eustatic sea-level change (Gascoyne et al., 1979; Shinn et al., 1996;
van Hengstum et al., 2011), whereas the water table is impacted by
other variables further inland (e.g., structural geology, lithology,
hydrogeologic gradients). Lastly, not all caves will act as sedimentary
depocenters throughout time, as conduits can naturally become
‘blown-out’ and devoid of sedimentation by high rates of water flow.

Most cave sedimentology has been focused on caves located in the
modern vadose zone, so cave sediment has been traditionally described
and classified as either autochthonous (in situ) or allochthonous
(transported). In vadose caves, allochthonous sediments can be deliv-
ered through fluvial, aeolian, or biologic vectors (Ford and Williams,
1989; Bosch and White, 2007; White, 2007), whereas weathering
products from regional geologic formations, inorganic internal cave
geochemical precipitates, or products of biomineralization often pro-
vides autochthonous sediment (Onac et al., 1997; Bosch and White,
2007; White, 2007; Fornós et al., 2009; Onac et al., 2014). As research
has expanded into phreatic caves, however, it has become apparent
that relating sedimentary facies to specific environmental processes
is important for accurate paleoenvironmental reconstructions. For
example, carbonate mud deposition occurs in coastal submarine
caves that are circulated with the ocean (Yamamoto et al., 2010; van
Hengstum et al., 2011; van Hengstum et al., 2015a), and calcite rafts
precipitate only at modern and paleo water tables (van Hengstum
et al., 2011; Collins et al., 2015a).

1.2. Floridian cave systems: lithologic, hydrogeologic, and regional overview

Florida's caves are primarily located within pre-Miocene shallow
water carbonates that were primarily deposited in the Eocene (Avon
Park Formation and Ocala Limestone) and Oligocene (Suwanee and
Marianna Undifferentiated Limestone)(Moore, 1955; Oyen and Protell,
2001). The Avon Park formation is dolomitized peritidal carbonates
(Randazzo and Zachos, 1984; Randazzo et al., 1990), the Ocala
Limestone is fossiliferous and interbedded with dolostone (Cooke,
1939, 1945; Puri, 1964; Chen, 1965; White, 1970; Schmidt, 1988;
Survey et al., 2001), and the Suwanee Limestone is a pale-orange
calcarenitic limestone that is also highly fossiliferous (Rupert, 1988).
Together, these formations comprise the highly porous and permeable
Upper Floridian Aquifer and control regional hydrogeology (Dufresne
and Drake, 1999; Martin and Dean, 2001; Jin et al., 2014). Depending
on regional thickness of the post-Miocene siliciclastics, especially
the Hawthorne Group, the Upper Floridian Aquifer can be confined,
semi-confined or unconfined (Fig. 1).

Florida has three primary karst areas: the Ocala Karst District near
the Suwanee River drainage basin (Ocala limestone), the Apalachicola
Delta District (Suwanee Limestone) (Rupert, 1988; Schmidt, 1988),
and the Dougherty Karst Plain District in the Apalachicola River drain-
age basin (combination of Ocala and Suwanee Limestone) (Spencer
and Lloyd, 1999; Green et al., 2009) (Fig. 1). In the Suwanee River drain-
age basin (25,800 km2), the Upper Floridian Aquifer is confined in the
north and east by the siliciclastic Hawthorn Group until its erosional
edge at the Cody Scarp when the aquifer becomes unconfined (Fig. 1).
This regional geologic variability provides an excellent natural laborato-
ry to study the relationships between hydrogeologic variability of the
Upper Floridian Aquifer, regional karstification, and subsurfacemineral-
ization (Florea et al., 2011; Gulley et al., 2013; Brown et al., 2014). The
Suwannee River has eroded an incised channel to a maximum depth
of only 9 m below modern sea level that extends 15 km out from the
shoreline into theGulf ofMexico, and it has only produced amodest Ho-
locene delta (b20 km2) (Wright et al., 2005). This starkly contrasts with
the deep incised valley systems and deltas produced by rivers on the
siliciclastic coastlines in the northwestern Gulf of Mexico (e.g., Brazos
and Trinity Rivers) during the Last Glacial Maximum (Anderson et al.,
2008). Gulley et al. (2013) describes how themodern surficial drainage
through the lower Suwanee River drainage basin was only activated
after Holocene sea-level rise forced vertical migration of the Upper Flo-
ridian Aquifer into channel systems in the unconfined carbonates. The
Upper Floridian Aquifer is also unconfined in the Marianna Lowlands
(Cooke, 1945), or Dougherty Karst Plain (Spencer and Lloyd, 1999),
and this region is connected into the Apalachicola River drainage
basin. The Apalachicola River has produced a modern bayhead delta in
Apalachicola Bay that formed ~8000 years ago (Osterman et al., 2009;
Twichell et al., 2010).

Two primary groups of hypotheses are generally used to describe
the formation of Florida's submerged caves (Gulley et al., 2013). First,
one group of hypotheses suggest that Floridian caves formed from
groundwater conditions analogous to other global localities where
caves are currently being formed, such as dissolution from either sink-
ing streams (Palmer, 2007), or mixing of different water masses that
allowed themixedwater to become undersaturatedwith respect to cal-
cite and dissolve limestone (Rhoades and Sinacori, 1941; Brinkmann
and Reeder, 1994). In contrast, the second group of ideas suggest that
Floridian phreatic caves formed under hydrogeologic conditions not
analogous to the present when water tables were lower during
glacioeustatic regressions (Florea et al., 2007; Gulley et al., 2011;
Gulley et al., 2013). As discussed by Gulley et al. (2013), Holocene sea-
level rise, shoreline migration in the Gulf of Mexico, and concomitant
base-level rise of the Upper Floridian Aquifer would have eventually
(i) submerged Florida's cave systems, (ii) activated the present
highstand hydrography of the Suwanee River System, and (iii) initiated
delta formation in the Gulf of Mexico. Perhaps these previously ad-
dressed linkages between oceanography, geomorphology, and hydro-
geology in the Suwanee River drainage basin are also important in the
northwestern region of Florida.

2. Study site

Hole in the Wall Cave (HITW; N 30.78327°, W 085.15618° ± 3 m)
and Twin Cave (N 30.78691°, W 085.14494° ± 3 m) are located
~300 m apart in Merritt's Mill Pond on the Dougherty Karst Plain, Flor-
ida (Figs. 1, 2). Merritt's Mill Pond is a surface stream feature (1.1 km2)
that is fed at its northeastern end by the discharge of Jackson Blue, a
magnitude 1 spring with a discharge of N2.8 m3 s−1 (Fig. 2). Merritt's
Mill Pondhas been dammed several times since the 1880s to accommo-
date local agricultural activities (Dodson, 2013), but it hydrographically
contributes to the Apalachicola River drainage basin through smaller
tributaries (e.g., Spring Creek, Chipola River). Groundwater flooding
HITW Cave and Twin Cave is currently homogenized freshwater that
is pH neutral and well oxidized. HITW Cave has a mean temperature
of 20.4 ± 0.1 °C, a mean salinity of 0.15 ± 0.01 psu, a mean pH of
7.2 ± 0.1, and a mean dissolved oxygen concentration of 5.7 mg/L ±
0.2. Similarly, Twin Cave has a mean temperature of 20.3 ± 0.2 °C, a
mean salinity of 0.2 ± 0.1 psu, a mean pH of 7.2 ± 0.3, and a mean dis-
solved oxygen concentration of 5.9± 0.6mg/L. The light-limited cavern
area in both caves has variable and discontinuous sediment (quartz
sand, coarse organic matter, freshwater mollusk shells), but this often
transitions to fine-grained organic matter (gyttja) with increasing pen-
etration into the caves.

The conduit geometry and geographic position on the stream
channel differ for each cave. Twin Cave occurs in the center of Merritt's
Mill Pond, and is more proximal to Jackson Blue Spring (1st magnitude
spring) than HITW Cave (Fig. 2). Twin Cave has a larger entrance and
the conduits have a clear two-story pattern: horizontally extensive
conduits occur primarily at ~16 m and ~28 m below the modern
water table that are connected by vertical conduits or ‘chimneys’ (Fig.
3). In contrast, HITW Cave is located further downstream from Twin
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Cave (Fig. 2), it is located on the stream channel margin, and it is
accessed by a narrow karst window. The conduits in HITW Cave that
are proximal to the karst window have a roughly linear geometry and
trend towards the northeast. The typical depth to the sediment–water
interface in HITW Cave is 26 to 30 m below the modern water level.

3. Methods

Sediment push cores were collected using advanced technical cave
diving procedures on May 2011 and July 2014: five cores from HITW
Cave and six from Twin Cave (Figs. 3, 4). Core depths were measured
with respect tomodernwater table elevation (±0.3m), and no attempt
was made to reference the current inland water table elevation to
present sea level in the Gulf of Mexico. Sediment cores were collected
using 5 or 8 cm diameter and 2.4 m length clear polycarbonate pipes,
while following safety protocols exceeding those outlined by the
American Academy of Underwater Sciences (AAUS). Coring sites were
separated by approximately 60 m of horizontal cave passage at water
depths ranging from 15 to 30 m below the modern water table. Thick
sediment (N2.4 m) has accumulated in the surveyed areas of HITW
Cave, but sediment accumulation was more limited in Twin Cave as
bedrock was reached on all coring drives except TWIN-C1 (Table 1,
Fig. 3). After extraction, cores were transported back to the laboratory
where they were split lengthwise, photographed, stratigraphically
described according to texture and the 2009 Year (revised 2012)
Munsell Soil Color Book, and continuously stored at 4 °C until further
analysis.

Textural variabilitywas analyzed in all cores using amodified loss on
ignition procedure (Sieve-First LOI, vanHengstum et al., 2016) and laser
particle size determination. For Sieve-First LOI, contiguous sediment
subsamples (2.5 cm3) were wet-sieved over a 63-μm mesh, emptied
into pre-weighed ceramic crucibles, and dried in an oven 80 °C for
12 h or until dry. After sampleswere dried and re-weighed, the remain-
ing organic matter in the samples was ignited in a muffle furnace at
550 °C for 4.5 h. Each crucible and remaining sediment residue was
then re-weighed to determine a final mass in milligrams of coarse sed-
imentary particles exceeding 63 μm in diameter per unit cm3 (note:
expressed throughout asDN63 ummg cm−3, which is not density). To de-
termine bulk organic matter, a separate set of sediment samples were
exposed to a classic loss on ignition procedure, following standard
methods (Dean, 1974; Heiri et al., 2001). However, it is likely that or-
ganicmatter is overestimated in sedimentary units rich in oxide andhy-
droxide minerals (Boyle, 2004). Textural variability was further
quantified in HITW-C1 with a Malvern Mastersizer 2000 laser diffrac-
tion particle size analyzer to measure standard particle size statistics
(volumetric mean, standard deviation, mode). The resultant particle
size distributions were interpolated and displayed using a color sur-
face plot (Fig. 5).

The mineralogy and trace element variability was examined
with XRF core scanning and X-ray diffraction (XRD). All recovered
sedimentary units are represented in HITW-C1, so this core was
scanned on a non-destructive Itrax core scanner every 250 μm to
obtain relative X-ray fluorescence measurements of the sediment's
elemental composition. A further 19 sediment subsamples from spe-
cific sedimentary units were selected for XRD analysis (HITW-C1, C2;
TWIN-C1, C4, C5, C6). XRD data was measured on a Bruker-AXS D8
Advanced Bragg–Brentano X-ray powder diffractometer employing
standard XRD laboratory protocols. The minerals in each sample
were determined by comparing resultant diffractograms with
the 2005 International Center for Diffraction Data (ICDD) material
identification database (Fawcett et al., 2005).

Age control was established by radiocarbon dating organic matter
remains with accelerator mass spectrometry. Samples of bulk organic
matter were submitted for radiocarbon dating because discernable
plant macrofossils (e.g., twigs, leaves) were only present in the cores
directly adjacent to the subaerial cave opening (karst windows). We
assume the primary source of allochthonous organic matter in the
cave is the adjacent terrestrial surface. Nine bulk organic matter
samples from TWIN-C1, TWIN-C4, HITW-C1, and HITW-C2 and a
twig from TWIN-C3 were submitted to National Ocean Sciences Ac-
celerator Mass Spectrometry. Final conventional radiocarbon dates
were calibrated to calendar years before present (cal yr. BP) with
IntCal13 (Reimer et al., 2013) using the freeware program CALIB
7.1 to account for secular changes in atmospheric radiocarbon con-
centrations (Table 3).

4. Sedimentary units

4.1. Organic matter deposits (Unit 1)

Unit 1 in both caves is dominated by bulk organic matter (30± 11%,
n = 424) that is ‘black’ (10YR 2/1) with occasional ‘brownish yellow’
(10YR 6/8) laminations. This facies in HITW-C1 (0–37 cm) is dominated
by coarse to medium silt with a mean particle size of 55 ± 14 μm
(4–5 ϕ) (Table 2; Fig. 5), and the average coarse particle content for
the facies (Db63 um) was 8 ± 9 mg cm−3 (n = 340). Coarser-grained
horizons are occasionally present (e.g., 35 to 36 cm in HITW-C2) that
contain marine invertebrate fossils (e.g., echinoid spines, marine fora-
minifera) that eroded out from the host limestone bedrock. The unit
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generally contains a lowabundance of Fe andMn (Fig. 5), but narrow in-
creases in Mn correlate to narrow ‘brownish yellow’ (10YR 6/8) lamina-
tions (e.g., 26 to 37 cm, HITW-C1). A ‘yellowish red’ (5YR 4/6) horizon
(b3 cm) occurred near the sediment–water interface in all HITW Cave
cores (Fig. 6A), which the XRD results from HITW-C4 (3–4 cm) indicate
that this is from the presence of goethite (Fe3(O)OH) and birnessite
((Na0.3Ca0.1K0.1)(Mn)2O4) (Fig. 7).

The lateral continuity and net accumulation of Unit 1 differs
between each cave. The uppermost 35–75 cm of sediment in all cores
from HITW Cave contains a texturally similar unit 1. In contrast, Unit 1
in Twin Cave was primarily fine-grained (gyttja), except near the karst
window (TWIN-C3)where coarse-grained organic fragments and fresh-
water gastropod shells were abundant (Figs. 4, 5). More distally into
Twin Cave, Unit 1 attenuates into a thin layer (b5 cm) that is texturally
similar to HITW Cave. Lastly, TWIN-C1 was obtained from the base of
the vertical shaft connecting the upper and lower horizontal conduit
levels. Unit 1 occurred as a thin deposit at top of TWIN-C1 (b5 cm),
but also as a thick sequence from 22 to 65 cm depth (Fig. 4). This
lower deposit contains more intact and leafy organic matter particles
in an overall fine-grained organic matter matrix.

4.2. Carbonate sediment (Unit 2)

This facies is present in both HITW Cave and Twin Cave, and is
dominated by poorly sorted carbonate particles with low bulk organic
matter content (4 ± 3% bulk organic matter, n = 442). The facies was
subdivided because of its heterogeneous texture (Units 2A and 2B,
Figs. 4-6). Unit 2A can range from ‘yellow’ (10YR 8/6) to ‘strong
brown’ (7.5YR 4/6), and Unit 2B is ‘very pale brown’ (10YR 8/3) to
‘brownish yellow’ (10YR 6/8). Based on particle size analysis of HITW-
C1, Unit 2A contains intervals of fine-grained sandy-silt (4 to 8 ϕ)
with amean particle size of 53± 19 μm (n=11, 38 to 49 cm:) whereas
Unit 2B is fine to medium sand (0 to 3 ϕ) with a mean particle size of
292 ± 111 μm (n = 12, 49 to 60 cm). The coarser sediment particles
in Unit 2B are typically lithified marine fossils (e.g., echinoid spines,
ichthyoid tooth) and carbonate rock particles. The sieve-first LOI
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Fig. 4. Lithologic variability (core logs and photographs), bulk organic matter (wt. %), coarse sediment fraction (DN63 μm), location of XRD and 14C samples in all of the recovered cores.

Table 1
Summary of coring locations and sediment recovery from Hole in theWall Cave and Twin
Cave (N/R = not recorded).

Core Horizontal cave
penetration
(m)

Water
depth
(m)

Stratigraphic
column sampled
(cm)

Compressed
sediment
recovery (cm)

Basement
reached
(Y/N)

HITW-C1 15 26 240 157 N
HITW-C2 50 26 240 166 N
HITW-C3 274 30 150 111.5 N
HITW-C4 244 28 235 150.5 N
HITW-C5 137 26 240 88 N
TWIN-C1 250 28 220 113 N
TWIN-C2 60 15 *N/R 60 Y
TWIN-C3 10 14 150 56.5 Y
TWIN-C4 200 16 102 82 Y
TWIN-C5 230 16 77 68 Y
TWIN-C6 150 16 131 78 Y
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technique that examined the coarse fraction also indicates the textural
heterogeneity of Unit 2, as the coarse sediment fraction (DN63 μm) varies
between 16 and 118 mg cm−3 (mean: 73 ± 28 mg cm−3, n = 116) in
Unit 2A and from 120 to 993 mg cm−3 (mean: 350 ± 191 mg cm−3,
n = 326) in Unit 2B.

XRF elemental analysis indicates a high abundance of Ca and Sr
in Unit 2, with a low abundance of Fe and Mn (Fig. 5). XRD analysis of
samples from Unit 2 indicate that calcite (CaCO3) and quartz (SiO2)
were the most dominant minerals, which supports the XRF results
(Table 2; Figs. 5, 7). However, goethite (Fe3(O)OH), magnetite
(Fe3O4), and trace amounts of kaolinite (Al2Si2O5(OH)4) were also
detected (Table 2; Fig. 7). No evidence of desiccation was observed
(e.g., mudcracks).

4.3. Fine-grained iron-rich facies (Unit 3)

Unit 3 is a laminated and Fe-rich (Fig. 5) unit that contains an aver-
age of ~9 ± 2% bulk organic matter, but this is likely an overestimate
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given the high content of oxide minerals (Boyle, 2004). The negligible
lower amount of Mn in Unit 3 differentiates it from Unit 4. In general,
Unit 3 is dominated by silt and clay particles (mean particle size: 9 ±
3 μm, 6 to 10 ϕ, n=28)with coarser-grained sand horizons. So, we fur-
ther subdivided Unit 3 into subunits based on the content of coarse par-
ticles (Figs. 4-6). Subunit 3A contains a mean coarse sediment fraction
(DN63 μm) of ~23±16mg cm−3 (n=46), but Unit 3B has amean coarse
sediment fraction of ~101 ± 41 mg cm−3 (n = 29) (Figs. 4-6). No evi-
dence of desiccation was observed in this unit (e.g., induration crusts,
mudcracks). Based on XRD analyses on a sample of Unit 3 from HITW-
C1, the minerals goethite (Fe3(O)OH), magnetite (Fe3O4), calcite
(CaCO3), and quartz (SiO2) are present (Fig. 7). It is noteworthy that
‘yellow’ (10YR 7/8) laminations in the sediment appear to correlate
with increased abundance of Ca in HITW-C1, and ‘dark brown’ (7.5YR
2.5/3) laminations appear to correlate with increased Mn abundance
(Fig. 5).

4.4. Intercalated Mn- and Fe-oxides (Unit 4)

Only HITW Cave cores contain Unit 4, which has higher Mn content
than the other units (Fig. 5) and is laminated (Figs. 4,6A). Bulk organic
matter content is estimated at 8 ± 2% (n = 135), but this is likely an
overestimate based on the high content of ferromanganese minerals.
One layer dominated by Mn in Unit 4 was exceptionally dark in color
(‘dark brown’, 7.5YR 2.5/2), which could be correlated between several
cores in HITWCave (e.g., HITW-C1: 132–142 cm, HITW-C2: 90–101 cm,
HITW-C4: 134–150 cm). Large accumulations of Mn-dominated cave
sediments have been previously documented, such as the 3 m succes-
sions of manganese oxide sediments in the lowest conduit levels in
Jewel Cave, South Dakota (Hill, 1982; Peck, 1986). Unit 4 is also divided
into subunits based on the textural variability. Unit 4A contains well-
sorted fine to coarse silt (8 to 4 ϕ, Unit 4 A), but Unit 4B contains medi-
um to coarse sand layers (2 to 0 ϕ) with invertebrate fossil grains and
carbonate sand particles (Figs. 4-6).

Though the precise mineralogical structure of naturally precipitated
Mn oxides and oxyhydroxides can be difficult to determine due to their
extreme microcrystallinity (Lind et al., 1987; Davison, 1993), the inten-
sity of the correlated peaks in the XRD diffractograms would suggest
that birnessite ((Na0.3Ca0.1K0.1)(Mn)2O4), jacobsite (MnFe2O4), and
ramsdellite (MnO2) dominate Unit 4 (Table 1, Figs. 6, 7). XRD results
indicate that goethite (Fe3(O)OH), calcite (CaCO3), and quartz (SiO2)
(Table 2; Fig. 7) are also present. Similar to Unit 3, XRF scans of
HITW-C1 reveal alternating ‘yellow’ (10YR 7/8) and ‘black’ (10YR 2/1)
fine-grained laminations throughout most of Unit 4 sediments that
correlate to increased levels of Ca in the sediment (Fig. 5).
4.5. Ferromanganese-rich sandy carbonate mud (Unit 5)

Unit 5 only occurs in Twin Cave (TWIN-C1, C4, C5, and C6) and it is
highly heterogeneous in terms of coarse sediment (N63 μm) andminer-
alogy. It would visually appear to be a variant of Unit 2 (carbonate
sediment), but it contains additional layers that are rich in ferromagne-
sian minerals. This is evidenced by the sediment color, which was ‘dark
reddish brown’ (5YR 3/4) with occasional ‘dark brown’ (7.5YR 2.5/2)
laminations, or vice versa. The particle size in Unit 5 varies from clay
to coarse sand (10 to 0 ϕ), so the unit was further divided into
subunits (Units 5A and 5B) based on bimodal distribution of coarse
sediment fraction (DN63 μm) data. Unit 5A is dominated by silt and clay
with a mean coarse sediment fraction of 64 ± 21 mg cm−3 (n = 30),
whereas Unit 5B is comprised of fine to medium sand with a mean
coarse sediment fraction of 214±101mg cm−3 (n=17). Organicmat-
ter content in both subunits was generally very low with a mean com-
position of 3 ± 2% (n = 46) (Table 2; Fig. 5).

The results of the XRD analysis indicate inconsistent trace metal and
mineralogical characteristics for this unit. Overall, crystalline minerals
such as calcite (CaCO3) and quartz (SiO2) appear to be the most
dominant; however, there is also a very strong presence of Fe and Mn
oxides and oxyhydroxide minerals including goethite (Fe3(O)OH),
magnetite (Fe3O4), birnessite ((Na0.3Ca0.1K0.1)(Mn)2O4), jacobsite
(MnFe2O4), and ramsdellite (MnO2) as well as trace amounts of
kaolinite (Al2Si2O5(OH)4) (Fig. 7). In fact, this facies contains



Table 2
Primary textural and mineralogical characteristics of recovered sedimentary units.

Unit Sedimentary description Grain size (HITW-C1) Coarse sediment fraction
(DN63 μm)

Organic matter
(% weight)

Fossils Munsell color Mineralogy

1 Organic matter deposits
-OMP-2: medium silts
-OMP-1: fibrous OM in a silt
matrix
Occasional coarse horizons
and a b5 cm redox boundary at
sediment–water interface

Unit 1:
Mean: 55 ± 14 μm, 4–5 ϕ
Sample STDEV: 65 μm n= 37

5 ± 33 mg cm−3 in 80% of
samples
n = 340

30 ± 11%
n = 424

Rare freshwater gastropod
shells
Rare Eocene echinoid spines
and marine foraminifera in
coarse horizons

General:
‘Black’ (10YR 2/1)
Laminations:
‘Brownish yellow’ (10YR 6/8)
Redox:
‘Yellowish red’ (5YR 4/6)

Bulk organic matter
Redox:
Goethite (Fe(O)OH)
Birnessite
((Na0.3Ca0.1K0.1)(Mn)2O4)
Calcite (CaCO3)
Quartz (SiO2)

2 Carbonate sediments
Poorly sorted
Unit 2A: fine sandy silts
Unit 2B: predominantly coarse
fossiliferous sand in a silt
matrix

Unit 2A:
Mean: 53 ± 19 μm, 4–8 ϕ
Sample STDEV: 65 μm
n= 11
Unit 2B:
Mean: 292 ± 111 μm, 0–3 ϕ
Sample STDEV: 348 μm
n = 12

Unit 2A: b120 mg cm−3

73 ± 28 mg cm−3

n = 120
Unit 2B: N120 mg cm−3

350 ± 191 mg cm−3

n = 332

4 ± 3%
n = 450

Abundant Eocene marine
fossils:
-echinoid spines and
fragments
-foraminifera

Unit 2A General:
‘Yellow’ (10YR 8/6) to ‘Strong
brown’
(7.5YR 4/6)
Unit 2B General:
‘Brownish yellow’ (10YR 6/8)

Calcite (CaCO3)
Quartz (SiO2)
Goethite (Fe(O)OH)
Magnetite (Fe3O4)
Kaolinite (Al2Si2O5(OH)4)

3 Fine-grained iron-rich facies
Unit 3 A: fine silt and clay
matrix-highly laminated
Unit 3B: medium sand in a
silty-clay matrix

Unit 3 A:
Mean: 9 ± 3 μm, 6–10 ϕ
Sample STDEV: 19 μm
n= 28
Unit 3B:
Mean: 131 ± 109 μm, 0–3 ϕ
Sample STDEV: 215 μm n= 13

Unit 3 A: b50 mg cm−3

23 ± 16 mg cm−3

n = 46
Unit 3B: N50 mg cm−3

101 ± 41 mg cm−3

n = 29

9 ± 2%
n = 74

Rare Eocene marine fossils:
-echinoid spines and
fragments
-foraminifera

General:
‘Strong brown’ (7.5YR 4/6)
Laminations:
‘Yellow’ (10YR 7/8)

Goethite (Fe(O)OH)
Magnetite (Fe3O4)
Calcite (CaCO3)
Quartz (SiO2)

4 Intercalated Mn- and Fe-oxides
Unit 4 A: silt and clay
matrix-highly laminated
Unit 4B: medium sand in a
silty-clay matrix

Unit 4 A:
Mean: 33 ± 12 μm, 4–8 ϕ
Sample STDEV: 89 μm n = 21
Unit 4B:
Mean: 136 ± 61 μm, 0–3 ϕ
Sample STDEV: 280 μm n = 19

Unit 4 A: b50 mg cm−3

23 ± 16 mg cm−3

n = 109
Unit 4B: N50 mg cm−3

Peak 1: 95 ± 41 mg cm−3

n = 20
Peak 2: 372 ± 81 mg cm−3

n = 8

8 ± 2%
n = 135

Rare Eocene marine fossils:
-echinoid spines and
fragments
-foraminifera

General:
‘Very dark brown’
(7.5YR 2.5/2)
Laminations:
‘Yellow’ (10YR 7/8)
‘Black’ (10YR 2/1)

Birnessite
((Na0.3Ca0.1K0.1)(Mn)2O4)
Jacobsite (MnFe2O4)
Goethite (Fe(O)OH)
Calcite (CaCO3)
Quartz (SiO2)

5 Ferromanganese-rich sandy
carbonate mud
Unit 5 A: fine carbonate sand
in an Fe/Mn rich silt matrix
Unit 5B: coarse sand in an
Fe/Mn rich silt matrix

Not sampled Unit 5 A: b120 mg cm−3

64 ± 21 mg cm−3

n = 30
Unit 5B: N120 mg cm−3

214 ± 101 mg cm−3

n = 17

3 ± 2%
n = 47

Some Eocene marine fossils:
-echinoid spines and
fragments
-foraminifera

General:
‘Dark reddish brown’ (5YR
3/4)
Laminations:
‘Dark brown’ (7.5YR 2.5/3)
‘Brownish yellow’ (10YR 6/8)

Goethite (Fe(O)OH)
Calcite (CaCO3)
Quartz (SiO2)
Birnessite
((Na0.3Ca0.1K0.1)(Mn)2O4)
Jacobsite (MnFe2O4)

6 Coarse quartz sand
Very well sorted

Not sampled 1074 ± 59 mg cm−3

n = 5
b1 ± 1%
n = 5

No apparent fossils General:
‘White’ (10YR 8/1)

Silica sand: Quartz (SiO2)
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discernable levels of every mineral identified in each of the other
facies identified in Units 2–4.

4.6. Quartz sand (Unit 6)

Unit 6 is well-sorted, ‘white’ quartz sand (10YR 8/1). This facies is
only present in TWIN-C2 at 49 to 54 cm, just before deposition of Unit
1. Sediment from this unit was too coarse to be analyzed by XRD; how-
ever, exposure of the sand-sized particles to 10% HCl produced no effer-
vescence. This suggests the sand is most likely quartz (SiO2). This unit
also contained little organic matter (N1 ± 1%), and has the highest
mean coarse sediment (N63 μm) fraction of all of the observed facies
(1074±59mg cm−3) (Table 2; Fig. 4). No fossil materialwas observed.

5. Chronology and correlation

Based on the textural and mineralogical characteristics, the facies
can be grouped into three broad sedimentary styles, in stratigraphic
order from bottom to top: ferromanganese deposits (Units 3, 4),
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and Twin Cave. Reference peaks for minerals are identified below (stick graphs after
Fawcett et al., 2005).
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In HITW Cave, the ferromanganese deposits pass upwards into
carbonate sediment, which are also present in the subsurface of Twin
Cave (Fig. 4). The presence of carbonate sedimentary units with similar
sedimentary character warrants correlation in the subsurface, but
the subunits in Unit 2 (Unit 2A versus 2B) could not be confidently
correlated between core sites (Fig. 4). Perhaps the subtle textural
variability between Unit 2A and Unit 2B is related to site-specific depo-
sitional processes in the conduit from local hydrodynamics or entirely
stochastic processes. In HITW Cave, the carbonate sediment pass into
the organic deposits at ~5500 cal yr. BP, which suggests a marked
change in environmental processes operating the cave. There are no
shallower conduit levels in HITW Cave, which suggests that sedimenta-
ry processes deeper in the aquifer abruptly changed from conditions
promoting carbonate dissolution to a régime dominated by allochtho-
nous organic matter sedimentation.

In Twin Cave, however, sedimentation alternated between the
carbonate sediment and organic matter (e.g., TWIN-C1, Fig. 4), which
suggests an oscillation of environmental processes (carbonate
dissolution vs. allochthonous organic matter supply). This is likely a
combination of conduit geometry and elevation. Most cores from Twin
Cave are from a shallower conduit level than HITW Cave, and therefore
the cores are documenting activity at a shallower level in the aquifer.
The vertical chimneys between the upper and lower conduit levels
can also permit re-mobilization of sediment from the upper conduit
levels to the lower conduit levels. However, the organic matter deposits
are temporally constrained with radiocarbon dates, so the prominent
organic matter deposits are correlated in the subsurface.

Based on the radiocarbon results (Table 3), the organic matter de-
posits were emplaced during two pulses that we term Organic Matter
Pulse 1 and 2. Organic Matter Pulse 1 (OMP-1) occurred from 13,900
to 12,700 cal yr. BP, which deposited organic matter in both the upper
and lower conduit level in Twin Cave. Unit 1 accumulated in the lower
conduit levels at TWIN-C1 from 13,950 ± 160 to 13,930 ± 190 cal yr.
BP, but was deposited for a longer period of time until 12,762 ±
80 cal yr. BP at the shallower conduit levels (date from TWIN-C4 at 26
to 58 cm). Above OMP-1 in TWIN-C4 is a layer of carbonate sediments,
similar to TWIN-C1 from 22 to 65 cm, in TWIN-C4 from 26 to 58 cm, in
TWIN-C6 from 21 to 40 cm, and in TWIN-C2 from 38 to 48 cm. There-
fore, we correlate this lower organic matter deposit in the subsurface
of the Twin Cave cores, but recognize that uncertainty in this correlation
remains until further radiocarbon dating is obtained. NoUnit 1 accumu-
lated at the TWIN-C5 sampling location, but given the vertical conduit
(‘vertical chimney’) connecting the upper and lower horizontal conduit
levels before the TWIN-C5 core site, it is likely that sediment bypassed
the site of TWIN-C5 by instead becoming transported down the Skiles
Passage or a vertical chimney (‘sediment bypass’, Fig. 3). If correct,
this would indicate that conduit morphology is an important control
on sedimentation in inland flooded caves (Fig. 3), which has also been
documented for coastal phreatic caves (Collins et al., 2015a).

Organic Matter Pulse-2 (OMP-2) occurred from ~5600 to
3500 cal yr. BP, and is present in both Twin and HITWCave. A thin de-
posit of Unit 1 occurs at the top of TWIN-C1 (0–5 cm), with
constraining ages at 0 to 1 cm and 4.5 to 5.5 cm of 5170 ± 130 and
3920 ± 50 cal yr. BP, respectively. This age inversion may be related
to local bioturbation (e.g., catfish), or erosion of sediment from the
upper conduit level, re-mobilization down the vertical chimney,
and re-deposition at the lower conduit level. However, the inverted
ages still indicate that organic matter influxed into Twin Cave oc-
curred during a discrete time window, though it has since experi-
enced re-mobilization. Closer to the cave exit, the dated twig from
Unit 1 in TWIN-C3 at 32.5 cmwas aged to 8300 ± 100 cal yr. BP, sug-
gesting that deposition of Unit 1 at this core site was dependent upon
its proximal location to the karst window (Fig. 3B). OMP-2 is more
expanded in HITW Cave, with a 35-to 75-cm-thick deposit at the
tops of all cores from HITW Cave. Based on the radiocarbon results
from HITW-C1 (35–36 cm) and in HITW-C2 (34–35 cm), Unit 1
began deposition at 5630 ± 30 and 5530± 60 cal yr. BP, respectively
(Table 2). Most importantly, these results promote three inferences:
(1) that modern sedimentation is negligible in the distal conduits of
both caves, (2) that OMP-2 occurred over ~2100 years from 5600 to
3500 cal yr. BP, and (3) OMP-2 deposited more sediment into HITW
Cave than Twin Cave.

6. Discussion

6.1. Emplacement of ferromanganese deposits

Iron and manganese oxides and oxyhydroxide minerals dominate
the basal sediments recovered from HITW Cave (Units 3–5), which
can be more generally referred to as ferromanganese deposits
(Ghiorse and Ehlich, 1992; Splide et al., 2006; Gázquez et al., 2011).
Thinner horizons of ferromagnesian deposits are also intercalated
in Unit 5 at the tops of cores from Twin Cave. However, deposition of
these upper Unit 5 horizons likely occurred under different



Table 3
Radiocarbon results on core samples from Hole in the Wall Cave and Twin Cave.

Core Sampled depth
(cm)

Material
dated

Conventional 14C age
(BP)

δ13C
(‰)

2σ calendar ages in yr. BP
(probability)

1σ calendar ages in yr. BP
(probability)

Calibrated 2σ age
(yr BP)

HITW-C1 36 to 37 Bulk organics 4920 ± 30 −29.1 5596–5666 (0.836) 5605–5655 (1) 5630 ± 30
5671–5714 (0.164)

HITW-C2 0–1 Bulk organics 3320 ± 30 −29.7 3470–3625 (1) 3486–3536 (0.547) 3550 ± 75
3549–3585 (0.453)

HITW-C2 34 to 35 Bulk organics 4780 ± 30 −29.15 5468–5590 (1) 5479–5536 (0.871) 5530 ± 60
5577–5585 (0.129)

TWIN-C1 4.5–5.5 Bulk organics 3560 ± 25 −28.39 3728–3748 (0.042) 3834–3889 (1) 3920 ± 50
3764–3792 (0.066)
3823–3926 (0.879)
3949–3959 (0.012)

TWIN-C1 0–1 Bulk organics 4490 ± 30 −28.2 5038–5297 (1) 5052–5077 (0.152) 5170 ± 130
5104–5134 (0.182)
5162–5195 (0.204)
5206–5280 (0.463)

TWIN-C1 23–24 Bulk organics 12,100 ± 45 −31.37 13,787–14,105 (1) 13,853–13,912 (0.288) 13,950 ± 160
13,921–14,045 (0.712)

TWIN-C1 66.5–67.5 Bulk organics 12,000 ± 50 −29.49 13,738–14,013 (1) 13,764–13,872 (0.730) 13,930 ± 190
13,878–13,927 (0.270)

TWIN-C3 32–33 Twig 7500 ± 60 N/M 8198–8393 (1) 8215–8243 (0.189) 8300 ± 100
8253–8255 (0.013)
8303–8382 (0.798)

TWIN-C4 30–31 Bulk organics 10,900 ± 80 N/M 12,689–12,836 (1) 12,704–12,836 (1) 12,760 ± 80
TWIN-C4 55–56 Bulk organics 11,900 ± 80 N/M 13,549–13,978(1) 13,586–13,783 (1) 13,760 ± 220
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environmental conditions than the basal ferromagnesian deposits in
HITW Cave based on the radiocarbon results (discussed further
below), sediment texture and mineralogy (see Section 4.5).

The oxidation of Mn(II) and Fe(II) into solid oxide precipitates
can occur inorganically, when the oxygen content or pH of water is
increased and enables the precipitation of metal oxides. In caves,
a redox gradient can naturally develop across the aquifer-cave
boundary as anoxic aquifer waters rich in Mn(II) and Fe(II) ions
drain into oxygenated cave systems and forms insoluble Fe(III) and
Mn(III, IV) precipitates (de Vitre and Davison, 1993; Martin, 2005;
Frierdich and Catalano, 2012; Brown et al., 2014). As such, it has
been suggested that thick successions of ferromanganese deposits
in Cova des Pas de Vallgornera, Mallorca, were produced inorganical-
ly from the oxidization of upwelling (hypogene) groundwater
(Fornós et al., 2014).

However, ferromanganese deposits can also be biologically precipi-
tated by Fe- and Mn-oxidizing bacteria (e.g., Leptothrix, Sphaerotilus,
Clonothrix, Thiotrix, Hyphomicrobumn) in oxygenated waters with a
near-neutral pH (Peck, 1986). Microbes living in caves can even
produce expansive ferromanganese stromatolites (Rossi et al., 2010;
Lazano and Rossi, 2012). Biogenic ferromanganese crusts have been
identified on cave surfaces, where Mn and Fe are derived from the
chemical weathering of the host bedrock (Northup et al., 2003; Spilde
et al., 2006; Carmichael et al., 2013). Ferromanganese deposits can
also form in freshwater streams flowing through caves and produce
ferromanganese crusts (White et al., 2009), shallow sedimentary
deposits (Onac et al., 1997; Manolache and Onac, 2000), or pebbles
and coatings on pebbles (Frierdich and Catalano, 2012).

In an important example from Florida, Florea et al. (2011) describe
the active flocculation and precipitation of iron oxides in Thornton's
Cave by Leptothrix (Withlacoochee River drainage basin; Fig. 1).
Depending on the season, Thornton's Cave functions as either a sink
(siphon) or spring (estavelle) with the adjacent Withlacoochee River
(Fig. 1). The local water table is positioned within the conduits of
Thornton's Cave, and the elevation of the water table oscillates
with the seasons (Florea et al., 2011). If we assume that the overall
stratigraphic architecture in HITW Cave is organized from oldest to
youngest, then a minimum age for the basal ferromanganese deposits
is the late Pleistocene, and the basal deposits would likely be coincident
with periods of lower aquifer water levels during lower eustatic sea
levels (Florea et al., 2007). It is possible that Thornton's Cave provides
a modern analog for paleo environmental conditions when the fer-
romanganese deposits were emplaced in HITW and Twin Cave. No
evidence of desiccation or induration was observed in our cores,
such as has been observed in Mallorcan cave sediments (Fornós
et al., 2009), which suggests continuously humid conditions or in-
termittent standing water in the cave. Additional modern sedimen-
tary analogs are required to better understand environmental
conditions in the cave during deposition of the ferromanganese
deposits.

At this stage, it is uncertain whether inorganic or biologic processes
drove precipitation of the ferromanganese deposits, or specifically how
these processes relate to the paleo water table (vadose zone, phreatic
zone, or at the water table). The presence of coarse-grained fossil hori-
zons does suggest some occasional increased water flow and/or calcite
dissolution. However, the preservation of fine laminations throughout
Units 3–5 indicates that quiescent water conditions were dominant.
Lower eustatic sea level during the late Pleistocene likely placed the
local water table considerably closer to, or below, the basal conduit
level of HITWCave (Florea et al., 2007), which certainly altered regional
hydrogeology. At this stage, it would be speculative to provide a specific
elevation of the paleo table during the Pleistocene, as the water table
elevation inland is complex. However, such prehistoric water levels
perhaps generated a hydrographic system in HITW Cave that is par-
tially analogous tomodern conditions in Thornton's Cave. Such a sce-
nario would also explain the absence of thick ferromanganese
deposits in the horizontal conduits at a shallower level in the subsur-
face in Twin Cave (Fig. 3B), which may have been completely in the
vadose zone during contemporaneous deposition of Units 3 and 4
in HITW Cave. Alternatively, the absence of thick ferromanganese
deposits in Twin Cave at the shallower conduit levels may give cred-
ibility to a hypogene source of trace metals for deposition in HITW
Cave, since Twin Cave would have provided a thoroughfare of terres-
trially sourced water (epigene) to the paleo water table of the Upper
Floridian Aquifer. Further geochemical research is required to deter-
mine the origin and emplacement history of the ferromanganese
deposits.

6.2. Enhanced limestone dissolution and carbonate sedimentation

Deposition of carbonate sediment (Unit 2) in both caves likely indi-
cates similar environmental conditions. Unfortunately, the timing for
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the emplacement of the carbonate sediment is poorly understood be-
cause of a lack of suitable material for radiocarbon dating. However,
the radiocarbon ages at the contact with Unit 1 in both Twin Cave
(TWIN-C4) and in HITW Cave (HITW-C1,C2) indicate emplacement at
least from the early to middle Holocene, and the core logs indicate
that deposition typically occurs after accumulation of the ferromanga-
nese deposits (Fig. 4). It is striking that carbonate sedimentation in
HITWCave terminated in themid-Holocene. This suggests that the con-
ditions required for enhanced carbonate dissolution are not constant in
geologic time or geographic space, but they are likely linked to specific
paleoenvironmental conditions.

Based on the abundance of marine invertebrate fossil remains
(e.g., shark teeth, echinoid spines), these sediments likely evidence
periods of enhanced bedrock dissolution and conduit expansion during
lower paleo water tables. Florea et al. (2007) noted the prevalence of
cave passages in west-central Florida at 12–15 m above modern sea
level and 35mbelow themodernwater table, and suggested their prev-
alence was associatedwith enhanced dissolution at specific paleo water
tables during previous sea-level lowstands. Recently, Gulley et al.
(2015) describe how heterogeneous pCO2 concentrations in freshwater
meteoric lenses is likely contributing to dissolution of Florida's caves, a
process that is amplified when terrestrial water flows into a subsurface
cave (Gulley et al., 2011). In the modern environment, Brown et al.
(2014) documented enhanced calcite dissolution and ferromanganese
deposition in Madison Blue Cave System (Suwanee River drainage
basin) caused by river reversals during storms. Madison Blue usually
functions as a spring and discharges water into the Santa Fe River, but
intense precipitation causes river water to instead to flush into the
cave (siphon) and push groundwater into the aquifer matrix porosity,
which promotes calcite dissolution and trace metal sorption from the
bedrock. As storm levels recede, reduced water from the aquifer matrix
porosity re-enters conduits with oxygenated cave water to precipitate
metal oxides on cave walls. However, Gulley et al. (2013) suggested
that river reversals alone have not generated Florida's phreatic caves
as there would be little way to force floodwater below a water table
level without a pre-existing void. Given the large successions of pre-
Holocene carbonate sedimentation in HITW and Twin Caves, the sug-
gestion of Gulley et al. (2013) seems valid. In fact, the carbonate sedi-
mentation concurs with the hypothesis of Gulley et al. (2013) and
Florea et al. (2007) that enhanced dissolution most likely occurs at
paleo water tables. However, stratigraphic analysis of sediments
emplaced in phreatic caves in eastern Florida is needed to further eval-
uate this hypothesis.

6.3. Organic matter deposition and linkage to the Apalachicola River
drainage basin

Deposition of Unit 1 appears closely linked to known intervals of
climate change and activation of surficial hydrologic networks in the
Floridian region. Cave systems in the Upper Floridian Aquifer are an
integral part of the regional hydrologic cycle, such that one would
predict that precipitation variability and base level changes caused by
glacioeustatic sea levels could influence the environments in subsurface
void spaces (Florea et al., 2007; Gulley et al., 2013).

The deposition of OrganicMatter Pulse 1 (OMP-1) in Twin Cave from
13,900 to 12,700 cal yr. BP coincides with the Bølling/Allerød climate
oscillation, which is a period of general global climate warming that
terminated with a return to cold, glacial-like climate conditions at the
onset of the Younger Dryas at ~12,700 yr. BP (Bard et al., 2010;
Deschamps et al., 2012) (Fig. 8). The lack of OMP-1 in HITW Cave
suggests that either (a) the HITW karst window was not yet open,
or (b) the surficial stream in Merritt's Mill Pond that was transporting
organics into Twin Cave was not interacting with the karst window on
the side of the stream channel that is the entrance to HITW Cave.
Based on pollen reconstructions from Camel Lake (Watts et al., 1992)
and Sheelar Lake (Watts, 1980), northern Florida was dominated by
mesic, temperate forests through the Bølling/Allerød Interstadial,
which would indicate that the precipitation was high (Overpeck et al.,
1989) (Figs. 1, 8). However, spruce populations near Camel Lake from
14,330 ± 275 cal yr. BP to 12,610 ± 135 cal yr. BP indicate
that the lower Apalachicola River drainage basin was unusually cool at
this time (Watts et al., 1992), thus behaving paradoxically to the global
trend towards warmer environments during this period. It is possible
that regional cooling of Northwestern Florida during the Bølling/Allerød
Interstadial is related to the cooling of the Gulf of Mexico caused by
Mississippi River discharge of glacial meltwater between 14,650 and
13,600 yr. BP (Fairbanks, 1989; Bard et al., 1990; Deschamps et al.,
2012) (Fig. 8), which is thought to have also rapidly changed sea level
by as little as 0.66 ± 0.07 m (Wickert et al., 2013) or as much as 17 ±
5m (Deschamps et al., 2012). This sea-level rise could have had a signif-
icant effect on the water table level and hydrodynamics of the Upper
Floridian Aquifer in northwestern Florida, perhaps even promoting
short-lived surface streams and ponds. Such changes in surface and
groundwater hydrology could be related to deposition of OMP-1.

After deposition of OMP-1 in Twin Cave, carbonate sedimentation
resumes at the upper horizontal conduit level, whereas Unit 5
(ferromanganese-rich sandy carbonate mud) is deposited in the lower
conduit level (TWIN-C1, Fig. 3). In nearby Camel Lake, a depositional
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hiatus occurred from~10,000 to 7000yr. BP (Figs. 1, 8). It is thought that
this depositional hiatus is related to lowering of the Upper Floridian
Aquifer or significant regional aridity (Watts et al., 1992). If this inter-
pretation is correct, then carbonate sediment from enhanced bedrock
dissolution resumed in the upper conduit levels in Twin Cave.

Deposition of OMP-2 from5600 to 3600 cal yr. BP likely occurred after
the Upper Floridian Aquifer flooded and activated modern surficial hy-
drographic features (lakes, streams), and is correlated with increased re-
gional precipitation and discharge through the Apalachicola River
drainage basin (Figs. 1, 8). Given the antecedent carbonate bedrock, it
has been suggested that many surficial hydrologic networks (i.e., lakes,
streams) in Florida were initiated as early as ~8000 yr. BP, as Holocene
sea-level rise forced vertical migration of the Upper Floridian Aquifer
into regional topographic lows (Watts and Hansen, 1988; Gulley et al.,
2014). For example, the Suwannee River only incised a valley to ~9 m
below sea level in the Gulf of Mexico (Wright et al., 2005), suggesting
that Holocene drainage through the Suwannee River only initiated after
topographic lows on the Ocala Karst Plain were inundated by sea level-
forced vertical migration Upper Floridian Aquifer (Fig. 1). In the Apalach-
icola River drainage basin, perhaps Merritt's Mill Pond was a dry basin
until ~6000 yr. BP, but inundation by the Upper Floridian Aquifer there-
after activated the surficial stream network and initiated erosion of ter-
restrial organic matter into HITW Cave and Twin Cave. At the coastline
in Apalachicola Bay, estuarine conditions were initiated at ~6400 yr. BP
(Fig. 8) when sea level in the Gulf of Mexico was ~6 m below present
(Milliken et al., 2008). More specifically, an eastern lobe of the modern
Apalachicola River bayhead delta was only active from 5800 to 5100 yr.
BP (Osterman et al., 2009; Twichell et al., 2010) during a known increase
in regional precipitation. In a review of Floridian lake level history, Watts
and Hansen (1988) suggest increased swamping in northern Florida
from 5000 to 2500 yr. BP was related to increased regional precipitation
(Fig. 8). Similarly, a pollen reconstruction from Goshen Springs in south-
ern Alabama (Fig. 1) also indicates increased precipitation beginning at
~5000 yr. BP (Delcourt, 1980). In Southern Florida, δ18O ratios fromostra-
codes living in Little Salt Spring document increased rainfall from ~5700
to 4000 yr. BP (Alverez Zarikian et al., 2005). Collectively, these records
suggest that deposition of OMP-1 occurred after the Upper Floridian
Aquifer flooded topographic lows and initiated drainage through the
Apalachicola River drainage basin; but also coincides with evidence for
invigorated flow through the Apalachicola River drainage basin related
to increased regional precipitation.

In the topmost portion of the cores, “yellowish red” (5YR 4/6)
ferromanganese mineralization is present that is either (a) a narrow
deposit in HITW Cave, or (b) part of Unit 5 in Twin Cave (Figs. 4-6).
Given that these sediments are likely deposited after regional base-
level rise decelerated in the middle Holocene, it seems likely that the
seasonal geochemical processes described at Madison Blue in the
Suwanee River drainage basin by Brown et al. (2014) are also operating
at Twin andHITWCaves. Alternatively, this narrow layer of ferromanga-
nese deposits represents a redox boundary as anoxic hypogenewater is
oxidized when it encounters the oxygenated conduit.

7. Conclusions

• Late Quaternary detrital sedimentation in two phreatic caves in
northwestern Florida appears broadly linked to ocean and atmospher-
ic forcing, whereby feedbacks between sea level and the local water
table elevation and regional precipitation patterns impact cave
sedimentation.

• Six distinct facies were identified in the subsurface of HITW Cave and
Twin Cave inMarianna, Florida, USA, which can be grouped into three
broad sedimentary styles that are related to base-level variability of
the Upper Floridian Aquifer throughout the Late Quaternary. The
general architecture of these primary sedimentary styles in a trans-
gressive sequence, from bottom to top is: ferromanganese deposits,
carbonate sediment, and organic matter deposits. Lateral textural
variability was also observed, as sedimentation in conduits closest to
the karst window were different than deeper into the cave.

• Ferromanganese deposits were likely deposited during lower base
levels of the Upper Floridian Aquifer during the late Pleistocene. It
remains uncertain if they are derived from biologic (e.g., bacterial)
or inorganic (e.g., oxidation of hypogene waters) processes.

• Texturally variable carbonate sediment that is generally Ca- and
Sr-rich, and Mn- and Fe-poor was also likely deposited during lower
paleo water levels. The abundance of invertebrate fossils within
these sediments suggests that they document periods of enhanced
limestone dissolution. Based on the successions from lower conduit
levels in HITW Cave, the environmental conditions necessary for
enhanced dissolution and carbonate sedimentation have not occurred
over the last 5600 years. However, the environmental conditions
necessary for enhanced dissolution may have persisted at the
shallower conduit levels of TWIN Cave until more recently (Fig. 3).

• Organic matter deposits accumulate proximal to the cave exits (karst
windows), and their pulsed deposition occurred during discrete time
intervals, perhaps evidencing when invigorated flow occurred
through the Apalachicola River drainage basin. For example, OMP-1
(~14,000 cal yr. BP) occurred during the Bølling/Allerød climate
oscillation, and OMP-2 (5600 to 3600 cal yr. BP) occurred during
an interval of increased regional precipitation in the southern USA.

• Analysis of successions from other Floridian caves is required to
assess the regional continuity of these sedimentary signals, their
climatic forcing, and further refine their emplacement history.
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