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Abstract High-resolution paleoclimate records are essential for improving our understanding of
internal variability and the detection and attribution of forced climate system responses. The densely
populated northeastern United States is at risk from increasing temperatures, severe droughts, and
extreme precipitation, but the region has limited annual and seasonal-resolution paleoclimate records
beyond the instrumental record. Chamaecyparis thyoides, L. (B.S.P.), Atlantic white cedar, a wetland
conifer found within 200 km of the Atlantic coastline of the United States, is a promising tree-ring proxy
that can fill in these data gaps. Here, we develop and analyze a new network of Atlantic white cedar
tree-ring chronologies across the northeastern United States and demonstrate that site selection is
important for regional paleoclimate reconstructions. Ring width variability reflects winter through
summer temperatures at inland and hydrologically stable sites in the northernmost section of the species'
range. Ombrotrophic sites along the coast record hydrological signals and correlate with growing season
precipitation. We demonstrate skillful regional climate field reconstructions for the last several centuries
and show the increased skill from incorporating our moisture sensitive sites into broad-scale products like
the North American Drought Atlas. This comprehensive understanding of the species' climate responses
leads to a tree-ring network that provides the long-term multivariate climate context at multidecadal and
centennial time scales for the large-scale ocean-atmospheric processes that influence the climate of the
region. We use this network to examine the covariance of temperature and drought across the New
England area over the past two centuries.

1. Introduction
Anthropogenic climate change in the northeastern United States (hereafter, the “Northeast”) will have sig-
nificant consequences for human health and the economic, cultural, and ecological resources of the region
(Horton et al., 2014; Huang et al., 2017; Janowiak et al., 2018; Limaye et al., 2018; Pederson et al., 2013).
Climate impacts are anticipated to be greatest in the densely populated urban New York to Boston coastal
corridor (Brown et al., 2010; Horton et al., 2014). The region, spanning from New Jersey to Maine, has already
seen over a 1 ◦ C increase in annual temperature (Horton et al., 2014; Kunkel et al., 2013) and rapid step-wise
increases in precipitation over the past century, which have been attributed to increasing anthropogenic
CO2 (Howarth et al., 2019; Pederson et al., 2013). These forced trends may, however, mask or incorporate
important patterns of internal climate system variability that will continue to influence decadal-scale tem-
perature and precipitation in the Northeast (Fischer & Knutti, 2015; Min et al., 2011; Pederson et al., 2013).
Midlatitude and polar circulation anomalies, for example, have caused extremely cold winters in the past
decade (Ballinger et al., 2014; Kretschmer et al., 2018), despite overall regional warming trends. Further-
more, increasing precipitation across the region cannot be fully explained by sea surface temperatures or
atmospheric pressure patterns (Brown et al., 2010; Findell & Delworth, 2010; Karl & Knight, 1998; Kunkel
et al., 1999; Groisman et al., 2004; Min et al., 2011; Pederson et al., 2013; Seager et al., 2012). Intrinsic uncer-
tainties regarding future forced climate change and the role of regional internal variability underscore the
necessity to understand multidecadal to centennial climate variability across the region.

Developing paleoclimate temperature reconstructions for the Northeast is challenging due to the rela-
tive paucity of high-resolution temperature-sensitive proxy records in the region (Anchukaitis et al., 2017;
Marlon et al., 2017; Trouet et al., 2013; Wilson et al., 2016). Tree-ring chronologies provide annual or sub-
annual resolution information, can extend many hundreds of years or more into the past, and are effective
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Figure 1. Location of collected Atlantic White Cedar (AWC) sites (green—this study). Site numbers correspond to
those in Table 1. Ombrotrophic AWC sites are marked as green triangles; all other AWC sites are marked as green
circles. Green hatching indicates the species distribution as defined by the U.S Forest Service (E. L. Little, 1978).
Location of tree-ring chronologies that are used in the North American Drought Atlas are marked as white triangles
(E. R. Cook, Seager, et al., 2010).

proxies for climate variability and change over a wide geographic range, particularly in the midlatitudes. In
the Northeast, however, tree-ring chronologies typically exhibit mixed moisture and temperature responses
and are limited in age due to both widespread deforestation for agriculture and the short life span of most
regional species (Conkey, 1979; E. Cook & Jacoby, 1977; Meko et al., 1993; Pederson et al., 2013; St George &
Ault, 2014). These limitations present the largest challenge for statistically robust, multicentennial temper-
ature reconstructions for the region. Northeastern trees have been used successfully, however, for drought
and streamflow reconstructions (E. Cook & Jacoby, 1977; E. Cook & Krusic, 2004, 2012; Maxwell et al.,
2017; Pederson et al., 2004a). The North American Drought Atlas (E. Cook & Krusic, 2004, 2012) is a recon-
struction of annual resolution, 0.5◦ × 0.5◦ gridded summer (June through August; JJA) Palmer Drought
Severity Index (Palmer, 1965) over the North American continent. This index of soil moisture can extend
up to 2,000 years in parts of western North America and has been used extensively to observe and ana-
lyze drought patterns and variability across the United States (E. Cook et al., 1999; E. Cook & Krusic,
2004; B. I. Cook et al., 2015, 2016). In the Northeast, however, the NADA extends back only to the late 15th
century, the tree-ring network that informs the drought reconstructions are primarily inland rather than
coastal, and NADA does not use AWC (Figure 1).

Atlantic white cedar (Chamaecyparis thyoides, L. (B.S.P.), hereafter “AWC”) is a shade semi-intolerant tree
species that lives in wetlands ranging from the Gulf of Mexico to Maine and no more than 200 km distant
from the coast (A. Laderman, 1989; Gengarelly & Lee, 2006). AWC was heavily harvested to make shin-
gles, furniture, and boats until the 19th century (S. Little & Garrett, 1990). Regional differences exist in the
species genetic makeup (Mylecraine et al., 2004), regeneration potential (Mylecraine et al., 2005), hydrologi-
cal boundary conditions (A. Laderman, 1989; Crawford et al., 2007), and preferred substrate (Crawford et al.,
2007). In the Northeast, AWC is typically restricted to areas too wet or anoxic for other species and spends the
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majority of the growing season in standing fresh water environments (A. Laderman, 1989; Motzkin, 1990;
NHESP, 2007; Kelsey et al., 2011). AWC has previously seen limited use for climate reconstructions, with
recent work showing that in the northern extent of the species' range, reliable access to fresh water results
in a positive growth response to temperature (Hopton & Pederson, 2005; Pearl et al., 2017). AWC therefore
appears to be unique among Northeast species since it can be used to skillfully reconstruct temperatures
across New England based on the widths of its annual rings (Hopton & Pederson, 2005; Pearl et al., 2017;
Pederson et al., 2004b). This temperature sensitivity is in contrast to Taxodium distichum (L.) Rich., a wet-
land tree species of the Gulf of Mexico and mid-Atlantic coast, which, despite its similar wetland habitat, has
a significant relationship with spring-summer precipitation (D. Stahle et al., 2007), not temperature. Prior to
this study, the hydroclimate sensitivity of AWC has not been explored in the Northeast for potential drought
or precipitation reconstructions. We show that some AWC sites have a strong precipitation sensitivity in
their ring widths link to their local hydrological setting. Here we use a network of recently collected AWC
(Figure 1) across the Northeast to generate annually resolved, multicentury temperature and hydroclimate
reconstructions and improve the resolution of the NADA along the Northeastern seaboard.

Our new climate reconstructions provide opportunities for analysis of the spatial and temporal patterns
of northeastern climate phenomena and their link to large-scale forcing. To demonstrate the utility of our
northeastern multivariate climate field reconstructions, we examine one of the most anomalous regional cli-
mate events of the past 100 years: the 1960s drought (Namias, 1966, 1983; Seager et al., 2012). This drought
was the most spatially extensive and persistent (lasting almost the entire decade) of the instrumental record
and, in contrast to the “hot droughts” seen in the western United States (Belmecheri et al., 2016; Berg
& Hall, 2017; Griffin & Anchukaitis, 2014), coincided with abnormally cold temperatures for the entire
decade (Namias, 1967; Seager et al., 2012). Current northeastern temperature and precipitation trends could
be masking the potential for a severe droughts and altering the risk for their return (Newby et al., 2014;
Pederson et al., 2013; Sweet et al., 2017). We use our temperature reconstruction and an updated NADA
drought reconstruction to observe the spatial fingerprint of frequency of these “cold drought” events in the
multicentennial context.

2. Methods
2.1. Study Sites and Chronology Development
We sampled 34 AWC sites throughout the Northeast between 2014 and 2017 (Figure 1). Six of these sites
(Sites 2, 3, 17, 19, 21, and 24 in Table 1) were recollections of sites sampled by Hopton and Pederson (2005),
and 28 sites are collections of previously unsampled AWC forests. Twenty-four sites north of 41 ◦ N with at
least 100 years of tree-ring data were retained for paleoclimate analysis and reconstruction (Table 1) based
on the latitudinal pattern of climate sensitivity identified by Hopton and Pederson (2005) and Pearl et al.
(2017). At all sites, AWC was canopy dominant and mostly even-aged. There are, however, large variations
in the hydrological characteristics of the AWC wetlands throughout the Northeast. Many sites have 0.5 m
or more of standing water throughout the year and are fed by a nearby freshwater source such as a lake
or stream. These “hydrologically stable” sites, wetlands with consistent access to fresh water, are typically
homogeneous stands with an understory of Sphagnum moss and fern species. Other AWC swamps are topo-
graphically higher, or geographically isolated from consistent fresh water sources. These “drought prone”
sites have minimal standing water and are apt to desiccate during droughts or from a change in hydrological
regime due to nearby development (A. Laderman, 1989; Laidig & Zampella, 1999; Motzkin, 1990; Rodgers
et al., 2003). Drought prone swamps often have thick understory cover (plants such as Rhododendron) and
can share the canopy with red maple (Acer rubrum, L.) and red spruce (Picea rubens Sarg.) around the periph-
ery. We used exposed roots and elevated hummocks in the AWC swamps as indicators of past desiccation in
these environments.

We propose a third hydrologic distinction for northeastern AWC sites that inhabit kettle holes along the
coast; the “ombrotrophic” sites. These glacial features are abundant in many northeastern coastal landforms,
including as Cape Cod and Long Island (A. Laderman, 1989; Motzkin, 1990). In these acidic and anaero-
bic swamps, AWC often preferentially outcompetes other wetland species, creating geographically confined
and homogeneous stands (A. D. Laderman, 1981; Golet & Lowry, 1987). The thick clay till (fine-grained
glacial diamicton) that underlies these coastal wetlands prevents groundwater from entering the swamps
(Drake, 1971; Mulligan & Uchupi, 2003; Trettin et al., 1996). These sites are not bogs, as is common for many

PEARL ET AL. 3 of 20



Journal of Geophysical Research: Atmospheres 10.1029/2019JD031619

Table 1
Atlantic White Cedar Sites Retained for Climate Reconstructions

Site name State Site code Lat Lon (◦ N ◦ W) Elev. (m) # Trees Time span Hydrologic designation
1. Acushnet Swamp MA ACU 41.685 −70.962 18 25 1841–2015 Hydrologically stable
2. Appleton Bog ME APB 44.333 −69.272 100 33 1859–2014 Hydrologically stable
3. Bellvale Mountain NJ BVC 41.206 −74.326 353 50 1845–2015 Drought prone
4. Black Pond Bog MA BLK 42.181 −70.812 38 23 1799–2015 Hydrologically stable
5. Brown Mill Pond NH TFT 42.987 −70.782 10 21 1813–2015 Drought prone
6. Buck Island Rd. MA OFS 41.662 −70.256 2 21 1817–2015 Drought prone
7. Destruction Brook MA DBR 41.575 −71.018 25 27 1850–2015 Drought prone
8. Ell Pond RI ELL 41.507 −71.780 99 21 1866–2015 Drought prone
9. Grinnell Swamp MA GNL 41.448 −70.754 1 41 1813–2014 Ombrotrophic
10. Hosea's Swamp MA HOS 41.747 −69.979 1 22 1828–2015 Ombrotrophic
11. Lake Tonnetta NY MAF 41.426 −73.612 164 22 1852–2015 Hydrologically stable
12. Marconi National Seashore MA MRC 41.910 −69.981 0–4 53 1802-2014 Ombrotrophic
13. Marine Biological Laboratory 1 MA MBL1 41.527 −70.654 2 21 1761-2014 Ombrotrophic
14. Marine Biological Laboratory 2 MA MBL2 41.524 −70.656 3 22 1804-2015 Ombrotrophic
15. Mashpee Pine Barrens MA MPB 41.590 −70.489 3 30 1790–2014 Hydrologically stable
16. Massabessic Experimental Forest ME TLH 43.447 −70.674 93 22 1846-2016 Hydrologically stable
17. North Madison Forest CT CAF 41.3646 −72.65 94 48 1814–2015 Hydrologically stable
18. Orealans Swamp MA ORS 41.755 −69.977 0 21 1854–2015 Ombrotrophic
19. Saco Heath Bog ME SAC 43.548 −70.466 45 27 1872–2014 Hydrologically stable
20. Sagg Swamp NY SAG 40.936 −72.285 6 21 1907–2015 Hydrologically stable
21. Uttertown NJ CBJ 41.115 −74.42 343 42 1764–2015 Drought prone
22. Walpole Cedar Swamp MA UTF 42.110 −71.271 57 21 1873–2015 Hydrologically stable
23. West Hill Dam MA WHD 42.104 −72.612 80 21 1883–2015 Drought prone
24. Westminster Swamp MA WMS 42.526 −71.948 335 30 1845–2014 Hydrologically stable

Note. Numbers correspond to site locations in Figure 1.

ombrotrophic environments, but like ombrotrophic bogs, they are dependent on precipitation and highly
localized runoff for fresh water, aeration, and nutrients.

We collected increment cores of AWC following standard dendrochronological techniques (Fritts, 1976;
Stokes & Smiley, 1968), taking two to three increment cores per living, mature, and canopy dominant tree
and 20 to 40 trees per site. The cores were then dried, mounted, and sanded with progressively finer grit
to reveal fine wood anatomical structure. To ensure we assigned the correct year to each annual ring, the
increment cores were graphically and visually cross-dated at each site (Stokes & Smiley, 1968; Yamaguchi,
1990). We measured ring widths at 0.001-mm precision, and cross-dating was statistically verified using the
program COFECHA (Holmes, 1983).

To remove the geometric growth trend and isolate the common climate signal in the tree-ring series of each
site, we detrended and standardized the ring width measurements into site chronologies. We used a standard
negative exponential or linear growth curve (NEGEX) to retain low frequency climate signals (Fritts, 1976)
based on the experiments by Pearl et al. (2017). Previous work testing the sensitivity of northeastern AWC
ring-width series to different detrending techniques showed that the time series are susceptible to artifacts
when using signal free detrending (Pearl et al., 2017), a standardization technique developed to attempt to
avoid possible trend distortion or end effects related to the presence of common medium-frequency variabil-
ity (Briffa & Melvin, 2011; Melvin & Briffa, 2008). To account for changes in the number of series back in
time, we stabilized the variance in the chronologies based on the interseries correlation (ER. Cook, Briffa,
Meko, Graybill, & Funkhouser, 1995) and a 67% spline (T. J. Osborn et al., 1997; E. Cook & Peters, 1997,
1981). For climate analysis and reconstruction, we only used the site chronologies when the expressed pop-
ulation signal was above the traditional threshold of 0.85 (Wigley, 1984; T. J. Osborn et al., 1997). We used
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Figure 2. (a) Field correlation (Pearson's) of the temperature-sensitive AWC network's EOF1 signal with
January–August mean temperature (Harris et al., 2014). (b) Field correlation of the ombrotrophic AWC network's
EOF1 signal with March–August mean precipitation (Schneider et al., 2015). (c) Individual site correlations with local
grid point temperature (Harris et al., 2014). Ombrotrophic sites are marked as triangles. Hydrologically stable and
drought prone sites are marked as circles. Color of the symbol refers to the strength of the correlation. (d) Individual
site correlations with local grid point precipitation (Schneider et al., 2015). Ombrotrophic sites are marked as triangles.
Hydrologically stable and drought prone sites are marked as circles. Color of the symbol refers to the strength of the
correlation. Color scale is the same for panels a and c and panels b and d, respectively.

the autoregressive (AR)-standardized version of the chronologies for our climate analysis and reconstruc-
tions to preserve the common autocorrelation structure of the tree-ring data believed to be due to variations
in climate (E. Cook, 1985). We used the Blackman-Tukey method (D. B. Percival & Walden, 1993) to classify
the spectral and autocorrelation properties of each site. To ensure that the calculation of these spectral prop-
erties of the AWC chronologies were not dominated simply by the pervasive warming and wetting trends in
the Northeast, we preformed a sensitivity test by comparing the AWC time series characteristics before and
after removing the 21st century trend, as well as before and after truncating the time series at 1970.

2.2. Climate Analysis
We extracted the local grid point monthly temperature data from the Climate Research Unit (CRU) TS4.01
temperature product (Harris et al., 2014) and monthly precipitation data from Version 7 of the Global Pre-
cipitation Climatology Center (GPCC) precipitation product (Schneider et al., 2016) at each AWC site to
analyze the site's climate response. We calculated temperature anomalies from the 1950–1980 mean tem-
peratures. We performed seasonal correlation analyses as described by Meko et al. (2011) to calculate both
the Pearson correlation and partial correlation coefficients of the chronologies with monthly and seasonal
temperature and precipitation. Statistical significance of the seasonal correlations was evaluated using exact
simulation (D. Percival & Constantine, 2006; Meko et al., 2011).

To distinguish site-specific and broad-scale climate responses across the network, we performed an empiri-
cal orthogonal function (EOF) analysis on the entire network and on the AWC sites identified in our seasonal
correlation analysis to be significantly correlated (p < 0.01, the “high sensitivity” sites) with temperature
or precipitation. We correlated the time series expansion of the leading EOFs with January–August mean
temperature (Harris et al., 2014; Pearl et al., 2017) and March–August precipitation (Schneider et al., 2016)
fields to assess the extent of spatial correlation suitable for field reconstruction (Bretherton et al., 1992;
D. Percival & Constantine, 2006; Meko et al., 2011; Wallace et al., 1992). We analyzed the spatial loadings of
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Figure 3. Autocorrelation and spectral properties of chronologies. Lagged autocorrelation of (a) a representative
temperature sensitive site (MPB) and (b) representative ombrotrophic site (HOS) without the 21st century trend. Blue
dashed lines are the large-lag standard error (Anderson, 1976). Blackman-Tukey Spectrum of the (c) MPB and (d) HOS
chronologies. Thick black line is the variance of the time series, dashed blue lines are the 95% confidence intervals of
the spectrum (Jenkin & Watts, 1968). The red horizontal dashed line is the null Gaussian (white) noise spectrum.

the leading EOFs of the high sensitivity sites with respect to our field-based hydrological designations. To
examine the influence of sea surface temperatures (SSTs) on the terrestrial climate variability that controls
AWC growth, we compared the leading EOFs of the network against gridded sea surface temperatures from
the UK Met Office Hadley Center (Rayner et al., 2003).

2.3. Spatial Temperature Reconstruction
Based on the climate analyses described above (Figures 2a and 2c) and our prior findings (Hopton &
Pederson, 2005; Pearl et al., 2017), we reconstructed January–August mean temperatures using the CRU
TS4.01 temperature product as the gridded predictand over the area enclosed by 75◦ W to 67◦ W and 39◦

N to 48◦ N. Our site and network-level analysis yielded a set of 24 tree-ring chronologies (Table 1), and
the chronologies lagged by 1 year with respect to climate, as predictors for the reconstruction models. Our
use of lagged predictors was based on seasonal correlation analyses (Meko et al., 2011), and the significant
autocorrelation in the AWC chronologies (Figure 3).

We used a point-by-point regression (“PPR”) technique to reconstruct gridded January–August mean tem-
peratures for the Northeast (Anchukaitis et al., 2017; E. Cook et al., 1999). This method sequentially fits
single grid point principal component regression (PCR) models over a gridded field. Each grid point model
is determined by the sets of predictors located within a 500-km search radius. We prescreened the tree-ring
chronologies for significance at p < 0.1 level for entry into the predictor pool (E. Cook et al., 1999). Model
selection is based on the Akaike Information Criterion (Akaike, 1974; E. Cook et al., 1999). Each grid
point's reconstruction is nested so that as shorter chronologies drop out, a new PCR model is calculated and
screened for significance with the remaining chronologies (Meko, 1997). This method allows for the recon-
struction to vary in length back in time as dictated by the tree-ring chronologies within the search radius
(E. Cook et al., 1999; E. Cook & Krusic, 2004).

We used a split calibration and validation procedure (using the periods 1900–1955 and 1956–2010) to train
and evaluate our models (Meko, 1997; Michaelson, 1987) and used the full period (1900–2010) to calibrate
the final reconstructions (Snee, 1977). We quantified the variance explained by our reconstruction using
the R2 statistic. We used the reduction of error (RE) and coefficient of efficiency (CE) statistics to estimate
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reconstruction skill, with positive RE and CE values indicating the reconstruction performed better than
a naïve estimate of the mean (E. Cook et al., 1999; Wahl & Ammann, 2007). For further proxy-validation,
we observe years of anomalous northeastern temperatures described in the historical record prior to the
start of the instrumental record (E. R. Cook et al., 2007; E. R. Cook, Anchukaitis, et al., 2010). To deter-
mine the larger-scale climate dynamics associated with northeastern climate anomalies, we defined the
75th (warmest) and 25th (coldest) percentile of the Northeast regional temperatures as reconstructed by the
AWC network and composited the surface temperature, sea level pressure, and sea surface temperatures
anomalies from the 20th Century reanalysis product for those years (Compo et al., 2011).

2.4. Precipitation and PDSI Reconstructions
Based on our site level and network climate analysis (Figures 2b and 2d), we used the ombrotrophic sites
(Table 1) to reconstruct Southern New England March through August (“growing season”) precipitation
for the region from 41◦ to 42.5◦ N and 72◦ to 69◦ W extracted from the GPCC v7 product (Schneider et al.,
2015). The area of highest correlation between the leading signal of the ombrotrophic sites and precipita-
tion includes a relatively small region (Figure 2b) as coastal precipitation variability here is highly localized
(Brown et al., 2010; Kunkel et al., 2013). We therefore used a simple nested composite-plus-scale (CPS)
approach (Esper et al., 2002; E. Cook et al., 2002; Esper, 2005; Pearl et al., 2017) to reconstruct precipitation
for this specific region alone. This method scales the tree-ring series to the mean and standard deviation
of the instrumental observations during the calibration period and then evaluates the fit between tree-ring
reconstructed total precipitation and the instrumental data during the validation period. We used a split
calibration and validation (using the time period of 1925–1960 and 1961–2012) approach to train and eval-
uate our models (Meko, 1997; Michaelson, 1987). We estimated the uncertainty of our reconstructed time
series using the root mean square error (RMSE) of validation. As above, we quantify the reconstruction
explained variance using the R2 statistic and use the RE and CE statistics to validate our models and estimate
reconstruction skill (E. Cook et al., 1999; Wahl & Ammann, 2007).

Although a skillful northeastern field reconstruction of precipitation or PDSI is not possible using our lim-
ited number of ombrotrophic sites as predictors, these moisture sensitive sites do provide a new coastal
source of paleoclimate data not present in the NADA. We therefore incorporate our ombrotrophic chronolo-
gies with the existing NADA chronologies (E. R. Cook et al., 2007; E. R. Cook, Seager, et al., 2010) to provide
additional information for drought reconstruction at coastal grid points. We reconstructed the same JJA
PDSI season that is reconstructed in the NADA, for the Northeast using (1) only the ombrotrophic AWC
sites as predictors and (2) both the ombrotrophic AWC sites and northeastern NADA sites. We used the PPR
method described in section 2.3 using the 0.5◦ × 0.5◦ CRU self-calibrating Palmer Drought Severity Index
(T. Osborn et al., 2017; Wells et al., 2004) as the gridded predictand. We use a split calibration and valida-
tion procedure and period to train and evaluate our models (Meko, 1997; Michaelson, 1987) and used the
full available period covered by predictors and predictand for calibration in the final reconstructions (Snee,
1977). Many NADA chronologies terminate in 1980, thus limiting the number of common overlapping years
between the ombrotrophic and NADA chronologies during the instrumental period. As such, our split cal-
ibration and validation period was adjusted to 1900–1940 and 1941–1980. We use the same statistical skill
measures as described above.

Using our temperature field reconstruction and our combined Omborotrophic+NADA drought reconstruc-
tion, we examined periods of anomalous climate in the Northeast. We extracted a regional PDSI average
bounded by 75◦ W to 67◦ W and 40◦ N to 48◦ N from the reconstruction to identify periods of drought of
two or more years when the regional average PDSI was −1 or less (E. Cook et al., 1999; Herweijer et al.,
2007). We calculated the duration of these droughts and quantified their spatial extent using the drought
area index (DAI) metric (ER. Cook, Seager, et al., 2010), which quantifies the percent of reconstructed grid
points that are below a given threshold of PDSI (here, −1) at a given time. Using DAI, we identified droughts
similar to the 1960s drought over the past two centuries and mapped the corresponding years' temperature
field. We then generated composite temperature and PDSI maps for the periods of drought identified in
the Omborotrophic+NADA regional average in order to identify the association between temperature and
moisture anomalies in the past.
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Figure 4. Correlations of temperature-sensitive and ombrotrophic AWC networks with Atlantic SSTs (Rayner et al.,
2003). (a) Correlation of the temperature-sensitive network's EOF1 with Atlantic SSTs. (b) Correlation of the
ombrotrophic network's EOF1 with Atlantic SSTs.

3. Results
3.1. Climate Signals and Hydrogeological Influences on Climate-Growth Relationships
All AWC sites cross-date internally with interseries correlations between r = 0.5 and r = 0.7. The majority
of our AWC network is significantly (p < 0.05) and positively correlated with local January–August tem-
peratures (Figure 2c) and not significantly correlated with growing season precipitation (Figure 2d). The
hydrologically stable sites have the highest correlations with local January–August mean temperature, while
both drought-prone and ombrotrophic sites have weaker and mixed temperature and precipitation climate
signals (Figures 2c and 2d). The nonombrotrophic sites with the weakest temperature correlation, BVC and
MAF, are two of the southernmost sites in the network. SAC has the highest correlation with local temper-
ature and is the only coalesced bog (formed by continuous peat accumulation in adjacent ponds, eventually
connecting and growing together above the water table) in the network, and possibly the southernmost
coalesced bog in the eastern United States (A. Laderman, 1989; Pearl et al., 2017). The leading mode of vari-
ance (EOF) of the AWC network explains 46% of the variance and correlates with CRU TS4.01 (Figure 2a)
January–August mean temperature field at r ≥ 0.5 for the entire Northeast and correlates with Gulf of Maine
and near-shore SSTs at r > 0.4 west of 68◦ W (Figure 4). Correlation with the CRU TS4.01 January–August
mean temperature field drops below r = 0.3 southeast of New York state (Figures 1 and 2a).

Our seasonal climate analysis of the ombrotrophic sites in Cape Cod (marked as triangles in Figures 2c
and and 2) showed significant (p < 0.01) sensitivity to growing season precipitation. The leading mode of
variance (EOF1) of the ombrotrophic network correlates with Cape Cod and coastal New England (south
of 44◦ N) precipitation at r > 0.5 and above (Figure 2b). EOF1 of the ombrotrophic network has lower
correlation with adjacent and Atlantic basin SSTs (Figure 4). The EOF analysis of the high sensitivity sites
confirms this multivariate climate signal in the network. The hydrologically stable sites with a strong local
temperature signal load strongest on the first EOF (46% of the variance), and ombrotrophic sites along the
coast load strongest on the second EOF (15% of the variance). The temperature-sensitive chronologies have
more persistent and stronger positive autocorrelation than the ombrotrophic chronologies (Figure 3). This is
exceptionally pronounced when the 21st century trend is included but remains even when the recent growth
trends are removed (Figure 3), suggesting this is characteristic of these sites even without recent warming.
The ombrotrophic chronologies have more high-frequency variance, mainly in the 4- to 6-year period, than
the temperature-sensitive network that is dominated by low-frequency variability (Figure 3).

3.2. Temperature Field Reconstruction
We developed a skillful January–August gridded mean temperature reconstruction for the Northeast span-
ning the interval 1820–2013. Our reconstruction explains up to 47% of grid point temperature variance
(Figure 5); however, not all grid points in the reconstruction have a stable reconstruction model through
time, with statistical skill dropping to fewer grid points in the later 18th century. West of 78◦ W, north of 47.5◦

N, and south of 39◦ N, our reconstruction models do not pass cross calibration and validation procedures,
with negative RE or CE in the reconstructions. The inclusion of 2011–2012 in our calibration period weak-
ens the skill statistics of the reconstruction. Whether this reflects a threshold of temperature sensitivity of

PEARL ET AL. 8 of 20



Journal of Geophysical Research: Atmospheres 10.1029/2019JD031619

Figure 5. The maximum skill statistics for the Northeast temperature reconstruction using the AWC network. CRSQ is
the final reconstruction calibration period (1900–2010 ) R2, VRSQ is the validation period (1950–2010) R2, VRE is the
validation period reduction of error coefficient, and VCE is the validation period coefficient of efficiency. Colors
indicate the associated skill values.

AWC is unclear from these data but suggests an avenue for future investigation (Bunn, Salzer, Anchukaitis,
Bruening, & Hughes, 2018).

To further validate the proxy reconstruction, we use our reconstruction to map years of known anomalously
cold and warm temperatures outside the instrumental record. The “Year without Summer,” 1816, is a known
cold period for the Northern Hemisphere following the eruption of Mount Tambora in 1815 (Stothers, 1984;
Rampino & Self, 1982; Harington, 1992; Chenoweth, 1996; Anchukaitis et al., 2017). Our reconstruction
shows widespread cooling of 1–3 ◦ C over most of New England compared to the 20th century average

Figure 6. Reconstructed January–August mean temperature anomalies (reference period 1950–1980) for (a) 1816
(Chenoweth, 1996) and (b) 1828 (Ludlum, 1966; Mock et al., 2007). Only grid points with skillful (RE >0) temperature
reconstructions are mapped.
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Figure 7. (a) The difference in winter (January–March) surface temperature anomalies between the reconstructed
warmest years (75th percentile) and coldest years (25th percentile) in the 20th century. (b) The difference in winter
(January–March) sea level pressure anomalies between the reconstructed warmest years (75th percentile) and coldest
years (25th percentile) in the 20th century.

temperatures (Figure 6). This cooling persisted for 2 years, with 1816–1817 being one of the coldest periods in
the Northeast over the entire reconstruction. To ensure that the reconstruction also represents preindustrial
warm years, we mapped temperature for January–August 1828 (Figure 6). Historical documents across New
England suggest the winter and spring of 1828 to be abnormally warm, with February temperatures almost
4 ◦ C in excess of the 1820–1840 mean in some locations (Ludlum, 1966; Mock et al., 2007). Our reconstruc-
tion shows warming of January–August mean temperature up to 1 ◦ C compared to the 20th century average
(1950–1980) reference period across the entire Northeast for that year. Year 1828 is one of the warmest years
in our reconstructed temperature record before 1900, and these anomalies are even larger when compar-
ing to the 1820–1840 reference period used in historical documents (Ludlum, 1966; Mock et al., 2007). Our
reconstruction shows that the warming trend of the past 40 years in the Northeast is unique over the past
two centuries, consistent with Pearl et al. (2017). Prior to 1970, the longest run of anomalously warm years
was from 1858 to 1868, although these years were only slightly (at most 0.4 ◦ C) above the 1950–1980 average,
whereas recent warming has seen January–August mean temperature anomalies over 2.5 ◦ C.

Our comparison of the AWC temperature reconstruction with reanalysis data (Compo et al., 2011) shows
circum-Atlantic temperatures vary in association with broad-scale winter sea level pressure patterns
(Figure 7). Anomalously cold years in the Northeast co-occur with a negative winter North Atlantic Oscilla-
tion (NAO) pattern of atmospheric pressure and warm years with a positive NAO pattern (Figure 7b) in the
20th century. Northern Europe, in particular Fennoscandia, shows concurrent years of anomalously warm
and cold years with the Northeast.

3.3. Southern New England Precipitation and Coastal Drought Reconstructions
We generated a skillful multicentury reconstruction of March through August precipitation for the Southern
New England and Cape Cod region using the local ombrotrophic sites (Figure 8). Our model has positive RE
and CE scores of 0.31 and 0.29, respectively, and an R2 value of 0.37 from 1828–2014. The model maintains
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Figure 8. Nested CPS reconstruction of Southern New England March–August sum precipitation using the
ombrotrophic AWC chronologies. Target instrumental data, taken from GPCC (Schneider et al., 2015), is shown in red,
reconstruction record from tree-ring widths in black. The shaded uncertainty represents ±1 RMSE of validation. Sum
precipitation for the region over the 1950–1980 period is marked with a dashed line (1,278 mm).

Figure 9. The maximum skill statistics for the JJA PDSI (CRU Self-calibrating Palmer Drought Severity Index (T.
Osborn et al., 2017) reconstruction using just the ombrotrophic AWC sites. CRSQ is the calibration period (1900–1955)
R2, VRSQ is the validation period (1956–2010) R2, VRE is the validation period reduction of error coefficient, and VCE
is the validation period coefficient of efficiency. Colors indicate the associated skill values.
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Figure 10. PDSI reconstructions and instrumental data for JJA PDSI of 1920. “NADA”: the NADA Reconstruction of
1920 JJA PDSI. “Ombrotrophic”: 1920 JJA PDSI reconstruction using only the ombrotrophic AWC sites as predictors.
“NADA+Ombrotrophic”: 1920 JJA PDSI using both NADA chronologies and ombrotrophic AWC as predictors.
“Instrumental”: the instrumental target field for 1920 JJA PDSI taken from the CRU Self-calibrating Palmer Drought
Severity Index, where negative numbers indicate dryer than normal conditions, and positive numbers indicate wetter
than normal conditions (T. Osborn et al., 2017).

skill (RE and CE scores of between 0.21 and 0.28, and R2 values between 0.33 and 0.39) through the earliest
19th century. The reconstruction is stable through time back to 1802, when the RE and CE values drop
below zero. Split calibration and validation testing showed that the precipitation reconstruction is sensitive
to small shifts in the calibration time period when calibrating with the later period and validating with the
earlier period. CE in particular is known to be sensitive to the calibration and validation period (Pearl et al.,
2017; Wahl & Ammann, 2007; Wahl & Smerdon, 2012), and does not influence our overall confidence in the
reconstruction. Early instrumental precipitation data used for the GPCC product are relatively sparse, which
may account for some of the mismatch between our reconstruction and gridded observations in the 1910s
and 1920s (Brown et al., 2010; Schneider et al., 2015). Our tree-ring reconstruction captures both interannual
and multidecadal variability (Figure 8), including a period of continuous high precipitation from 1850–1900.

To improve the resolution of drought reconstructions along coastal New England, we included our
ombrotrophic sites in a field reconstruction of PDSI across the Northeast. As expected, a gridded recon-
struction of PDSI for the northeastern United States using only the ombrotrophic sites shows skill only
proximal to the predictors—over the same region where we are able to skillfully reconstruct precipitation
using a CPS approach—for the period 1792–2014 (Figures S2 and 9). When combined with the abundant
moisture-sensitive NADA chronologies, however, we are able to skillfully resolve drought over both the coast
and islands of the Northeast that are not included in the NADA (Figure 10). Throughout the instrumental
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Figure 11. (a) Average PDSI for drought periods of equal or greater to the 1960s drought DAI as reconstructed by the
NADA+Ombrotrophic network over the past 200 years. (b) Average land temperature anomalies (reference period
1950–1980) for drought periods of equal or greater to the 1960s drought DAI and length as reconstructed by the AWC
network over the past 200 years. (c) Average Atlantic SSTs for drought periods of equal or greater to the 1960s drought
DAI and length since 1870. Data from the U.K. Met Office Hadley Center sea surface temperature (Rayner et al., 2003).

record, there are years where JJA PDSI fields disagree with the reconstructed fields in the NADA (Figure 10).
These disagreements are most pronounced along the northeastern coast, where the NADA reconstructs
a different magnitude, or even opposite sign, PDSI value than the target instrumental field (Figure 10).
When we include the ombrotrophic sites as predictors along with local NADA sites in a PDSI reconstruc-
tion, we not only better resolve the missing coastal features but more accurately represent coastal drought
dynamics (Figure 10), demonstrating the value for future field reconstructions of drought from including
ombrotrophic AWC chronologies in the northeastern United States.

During the 1960s, regional reconstructed PDSI was less than−1 from 1962–1970, and reconstructed regional
January–August mean temperature anomalies were around −1 ◦ C or below across the Northeast from
1960–1971. The 1960s drought had an average DAI value of 48%. Over the past 200 years, five reconstructed
droughts were similarly widespread across the region, and two of those droughts were decadal in length like
the 1960s drought. Using our multicentennial records of Northeast temperature and drought, we see that
periods of cold are typically contemporaneous with periods of drought (Figures S1 and 11). Our reconstruc-
tions indicate that cold droughts are common features of the past two centuries, with the most prolonged
droughts in the Northeast averaging 0.25–0.75 ◦ C colder than the 20th century mean across the entire region
(Figure 11b).

4. Discussion
In contrast to arid sites in western North America or high-latitude sites along the northern treeline, tree-ring
reconstructions in the northeastern United States—particularly of pasts temperatures—are challenging due
to the mixed and diverse climate response of species across the region. Uncertainties in paleoclimate recon-
structions here arise from these complex climate responses, the distribution of chronology sites, and the
relatively short lifespan of more species in the Northeast (Anchukaitis et al., 2017; Alexander et al., 2019;
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E. R. Cook & Pederson, 2011; Marlon et al., 2017; Meko et al., 1993; Pederson et al., 2013; Trouet et al.,
2013; Wilson et al., 2016). As a consequence, previous work using tree-rings as paleotemperature proxies
has been limited to regional average reconstructions (Pearl et al., 2017) or reconstructions targeting local
weather stations (Conkey, 1979), rather than field reconstructions. Spatial reconstructions are powerful tools
that allow for comprehensive understanding of regional climate characteristics, evaluate the influence of
different forcings on the climate system, and provide insight into regional climate patterns in response to
large-scale modes of ocean-atmosphere variability (E. R. Cook, Anchukaitis, et al., 2010; E. R. Cook, Seager,
et al., 2010; Goosse, 2017; Phipps et al., 2013). Our use of AWC as a paleotemperature proxy results in a skill-
ful field reconstruction of temperature for the Northeast using a regional network of tree-ring chronologies.
If these chronologies can be extended further in time, they potentially fill an important gap in large-scale
temperature field reconstructions for the Northern Hemisphere (Anchukaitis et al., 2017).

There is a clear latitudinal influence on temperature correlation of AWC sites, with weaker correlations at
the southernmost and more drought prone sites (Figure 2). This confirms the relationship between latitude
and temperature sensitivity shown by Pearl et al. (2017), as well as the tendency for the growth of trees in
the eastern United States to be limited by moisture, not temperature, away from the boundaries of their
ranges (E. Cook & Jacoby, 1977; D. W. Stahle & Cleaveland, 1992; Graumlich, 1999; Pederson et al., 2012,
2013). Our analysis here, however, shows that the hydrological conditions of the sites can overwhelm this
latitudinal trend, as the sites with the highest temperature correlations are not necessarily the northernmost
sites. Rather, the sites with the strongest temperature correlation are those in hydrologically stable wetlands,
above 41◦ N (Figure 2). The site with the highest correlation, SAC, is located in a raised bog with an elevated
water table, which may play into its heightened temperature correlation.

Due to the unique geohydrology of the ombrotrophic sites, the climate response of the AWC trees at these
sites are distinct from the rest of the network. Our network analysis shows that AWC in ombrotrophic
swamps has statistically significant correlations with growing season (March–August) precipitation, and
much lower correlation with local temperatures and SSTs (Figure 4). The relationship with local pre-
cipitation allows us to successfully reconstruct growing season precipitation for Southern New England.
Additionally, our results show that we can also use these ombrotrophic AWC sites to provide novel infor-
mation on coastal New England PDSI that is not captured in the NADA (ER. Cook, Seager, et al., 2010) and
thus improve the drought reconstructions for the area. We do not find a response to winter precipitation,
which suggests that snowfall plays an insignificant role in growth compared to the amount of freshwater
received from precipitation during the growing season. Not all of the ombrotrophic sites, however, are sim-
ple precipitation proxies. MRC, for example, is significantly correlated (p < 0.01) with local January–August
temperatures as well as with growing season precipitation. Additionally, not all sites in Quaternary out-
wash deposits (such as Cape Cod) are ombrotrophic; temperature-sensitive AWC sites, such as MPB or ELL,
exist in glacial outwash that are fed by nearby ponds or streams and are not isolated in depressed basins.
We have used these hydrological distinctions between sites in our study to offer a physical explanation
why certain coastal AWC sites have insignificant temperature correlations, and strong precipitation growth
responses. Persistent and significant autocorrelation appears to be characteristic of those sites with a domi-
nant temperature signal in their annual ring widths (Figure 3). This is in agreement with ecological studies
of western canopy dominated forests, where low-frequency variations reflect temperature fluctuations and
the high-frequency fluctuations reflect precipitation variations (Lamarche, 1974). Sites that are moisture
sensitive tend to have lower, less persistent lagged correlation, and more pronounced variability in the 3- to
10-year frequency (Figure 3). This information is also useful for identifying the climate response of subfossil
“ghost forests” that can be used to extend the living tree chronologies from the region.

Our gridded northeastern temperature reconstruction can be used to confidently identify temperature pat-
terns back to 1820 CE, with the highest confidence in coastal New England (Figure 5). Skill at many grid
points declines in the early 1800s, as we lose the majority of our predictor chronologies (Table 1). Although
not all grid points pass traditional thresholds for skillful split sample calibration and validation RE and
CE, our reconstruction nevertheless still confirms historical years of anomalous temperatures in the early
1800s (Figure 6). In years of extreme temperature anomalies, the region experiences widespread tempera-
ture changes of the same sign (Figure 6). This is in contrast to our drought reconstruction, where we see clear
spatial distinction between inland and coastal PDSI even in years of large regional-scale drought anoma-
lies (Figure 10). The abundance of ombrotrophic AWC sites on Cape Cod allows us to skillfully reconstruct
southern New England precipitation back to the early 18th century (Figure 8), but not much of the the rest of

PEARL ET AL. 14 of 20



Journal of Geophysical Research: Atmospheres 10.1029/2019JD031619

the Northeast (Figure 9). Nevertheless, the coastal ombrotrophic AWC more accurately represent northeast-
ern coastal drought than the NADA (Figure 10), and by combining the ombrotrophic sites with the NADA
predictors, we can resolve the fine coastal features of the Northeast and improve regional hydroclimate and
drought reconstructions (Figures 8 and 10).

The majority of the AWC network is located less than 10 km from the coast, where climate is strongly influ-
enced by Atlantic Ocean dynamics (B. I. Cook et al., 2011; Feng et al., 2016; Namias, 1967; Seager et al., 2012;
Wettstein & Mearns, 2002). We find strong correlations with the temperature-sensitive network's EOF1 with
local and cross basin Atlantic SSTs (Figure 4; Pearl et al., 2017). The ombrotrophic sites have much lower
correlations with SSTs, indicating that local ocean temperatures may have a stronger influence on regional
surface air temperature than southern New England hydroclimate. Our precipitation reconstruction shows
persistent, elevated moisture from approximately 1850 to 1900 (Figure 8) corresponding to a period of warm
Atlantic SSTs (a positive Atlantic Multidecadal Oscillation index) (Enfield et al., 2001; Hu et al., 2011). The
AWC network as a whole provide information about variability in local western North Atlantic sea surface
temperatures and basin-scale atmosphere circulation (Anchukaitis et al., 2019; Pearl et al., 2017). The 1960s
drought, for example, corresponded with a negative phase of the NAO and has been attributed to a com-
bination of anomalously cold ocean temperatures offshore and internal atmospheric variability (Collins,
2009; Namias, 1966, 1967; Seager et al., 2012). This was the most recent period of sustained negative tem-
perature anomalies across the entire Northeast, with comparable long periods of cold in the early 1900s
(1899–1914), and early to mid 1800s (1806–1821). Both of these periods also correspond with dry conditions
and increased DAI of 52% and 54%, respectively. Our results show that over the past 200 years most north-
eastern droughts of comparable duration and DAI to the 1960s were accompanied by cooler temperatures
across the Northeast (Figure 11b). The most severe reconstructed droughts in the 20th century corresponded
with cooler than average offshore SSTs (Figure 11c). Reconstructions of the NAO (E. R. Cook et al., 2019;
Jones et al., 1999) and the strong relationship of the temperature-sensitive AWC network with Atlantic SSTs
(Figures 4 and 7) lead us to infer that other periods of cold drought seen in our reconstructions beyond
the period of instrumental data would also have been accompanied by a negative NAO phase (Anchukaitis
et al., 2019; E. R. Cook et al., 2019; Jones et al., 1999) and cooler than normal nearshore SSTs (Figures 11
and 7). Our reconstruction shows a coherent temperature sensitivity across the Atlantic to broad-scale winter
NAO patterns (Figure 7) that is also observed in larger terrestrial proxy networks over the past millennium
(Anchukaitis et al., 2019). This relationship allows for the potential to improve estimates of hemisphere-scale
temperatures and atmospheric circulation anomalies based on our Northeastern reconstruction.

This study's gridded temperature reconstruction expands beyond single index reconstructions previously
developed for the region (Conkey, 1986; Pearl et al., 2017). The reconstruction, however, remains lim-
ited by the young ages of the chronologies used here, highlighting the need for continued development
of longer temperature-sensitive tree-ring chronologies. Many of the longest chronologies in our network
are ombrotrophic, which tend to have much weaker temperature signals than the hydrologically stable
sites. The young ages of AWC across the Northeast is primarily a consequence of extensive harvesting
of AWC wood that continued until the late 1800s. To generate longer paleoclimate records, preserved
dead (“subfossil”) wood can be used in combination with living material (Boswijk et al., 2014; Crawford
et al., 2007; Grudd et al., 2002; Roig et al., 1996; Salzer & Hughes, 2007; Salzer et al., 2019; Wilson et al.,
2012). The primary source of subfossil AWC exists along the northeastern coast line where ancient “ghost
forests” are now exposed in marsh and tidal environments (Bartlett, 1909; G. H. Cook, 1857; Heusser,
1949). Due to their proximity to, or location in, glacial outwash material, subfossil AWC may have grown in
ombrotrophic environments. The differences in time series characteristics between the ombrotrophic and
temperature-sensitive chronologies (Figure 3), therefore, are important tools for distinguishing the likely cli-
matic influences and geologic context of subfossil AWC. Subfossil AWC wood from the Northeast offers an
opportunity to extend the length of temperature reconstructions beyond what is possible using living trees
alone (A. Laderman, 1989; Bartlett, 1909; G. H. Cook, 1857; Gleba, 1978; Heusser, 1949).

5. Conclusions
AWC is unique among northeastern trees, as its annual growth at most locations is significantly correlated
with winter through summer temperature. Our work shows that careful site selection is critical for cli-
mate reconstructions when using AWC as a paleoclimate proxy. Temperature-sensitive sites are restricted
to the highest latitudes of the species' range, and coastal sites in ombrotrophic swamps are moisture, not
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temperature, growth dependent. The ombrotrophic swamps in our study are restricted to Cape Cod, where
they experience more temperate maritime temperatures than the inland sites (Brown et al., 2010; Horton
et al., 2014), and in these environments their primary freshwater source is precipitation. These hydrological
and geographical site conditions cause the ombrotrophic AWC tree-ring chronologies to be better suited for
precipitation (Figure 8) and drought (Figure 10) reconstructions.

We use the temperature-sensitive AWC to reconstruct a gridded temperature field over the Northeast for the
past 200 years. We successfully reconstruct historical climate anomalies, including the 1816 “year without
summer,” and the warm winter and spring of 1828 (Ludlum, 1966; Mock et al., 2007). We use ombrotrophic
AWC sites to reconstruct an area-averaged precipitation for Southern New England (Figure 8) and improve
reconstructions of JJA PDSI along the coast of New England (Figure 10). This coastal PDSI field recon-
struction provides new information on coastal versus inland drought patterns and the influence of Atlantic
Ocean on coastal climate. In addition, our coastal tree-ring network and strong correlations with local SSTs
(Figure 4) and winter Atlantic Ocean atmospheric pressure patterns (Figure 7) provide a new information
source on Atlantic ocean-atmosphere dynamics.

Improved paleoclimate reconstructions in the Northeast will depend on continued development of long
(prior to the 1800s) temperature-sensitive tree-ring chronologies. Although AWC remains one of the most
temperature-sensitive species in the region (Alexander et al., 2019; Hopton & Pederson, 2005), the inclusion
of multiple species in the northern part of their range limit into a temperature reconstruction may enhance
our ability to extend further in time and improve our skill across a wider geographic extent (Alexander
et al., 2019). The reconstructions presented here confirm the anomalous nature of current temperature and
drought trends in the Northeast in the context of the past few centuries. Although a common feature in the
past (Figure 11), periods of sustained aridity accompanied by cold temperatures across most of the North-
east have not occurred since the 1960s (Pederson et al., 2013; Seager et al., 2012). Coupled patterns evident
from the past may shift in the future, however, with regional trends toward both warmer temperatures and
increased moisture due to anthropogenic greenhouse gas emission, but internal variability in the region will
continue to be an important component of regional climate anomalies.

Data Availability Statement
The data that support the findings of this study are available within the article's supporting information and
will be openly available in The International Tree-Ring Data Bank (ITRDB; at https://www.ncdc.noaa.gov/
data-access/paleoclimatology-data/datasets/tree-ring). All of the climate data used here are publicly avail-
able: The 20th Century Reanalysis data are available from NOAA-CIRES (https://www.esrl.noaa.gov/psd/
data/gridded/data.20thC_ReanV2c.html), and HadISST data are available from the UK Met Office (https://
www.metoffice.gov.uk/hadobs/hadisst/).
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