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Abstract
Our knowledge of climate variability in the densely populated Northeastern United States is limited to
instrumental data of the last century. Most regional paleoclimate proxies reflect a mix of climate
responses, which makes reconstructing historical climate a challenge. Here we analyze tree-ring
chronologies from Atlantic white cedar (Chamaecyparis thyoides) as a potential regional
paleotemperature proxy. We evaluate our tree-ring network for spatiotemporal climate signal
strength and reconstruction skill across New England. Atlantic white cedar sites in the northern
section of the species’ range exhibit positive significant annual growth relationships with local and
regional temperatures. Chronologies constructed from northern sites yield skillful reconstructions of
temperature that reproduce centennial, multidecadal, and interannual variability in the instrumental
record, providing a novel paleotemperature record for New England.

1. Introduction

Anthropogenic changes to the climate system are global
and pervasive, warming the ocean and atmosphere with
consequences for and impacts on human and natural
systems. Over the past century, annual surface air tem-
peratures in the region of North America extending
from the state of Maine to Washington DC (herein,
the Northeast), have increased by over 1 ◦C, and are
projected to continue to rise by at least 2.5 ◦C over
the next several decades (Kunkel et al 2013, Horton
2014). A thorough understanding of Northeastern cli-
mate variability at decadal to centennial time scales is
necessary in order to anticipate climate change impacts
on ecological and human systems in this densely popu-
lated region. Reconstructions of past climate variability
and extremes depend on identifying and utilizing high-
resolution proxy paleotemperature data. These data
allow us to place current trends in a long-term con-
text, quantify the range of natural variability, develop
an understanding of climatic change occurring outside
the narrow range of observations, and evaluate climate
models.

This study investigates the temperature sensitiv-
ity of the growth rings of Atlantic white cedar (AWC;
Chamaecyparis thyoides) and develops a temperature
reconstruction for the Northeast based on these data.
Pollen and macrofossil analysis has confirmed the pres-
ence of AWC in the Northeast since at least the early
Holocene (Belling 1977), and dead AWC trunks and
stumps preserved in coastal sediments throughout the
region (Bartlett 1909, Heusser 1949, Laderman 1989)
have radiocarbon ages up to 7000 years old. Successful
paleoclimate reconstructions using this species, there-
fore, would allow creation of annually resolved and
multi-millennial Holocene temperature records for the
Northeast that are otherwise unavailable.

Dendroclimatology provides a long-term view of
tree growth in response to changes in regional cli-
mate. Tree-ring records have the advantage of being
annually resolved and widely distributed across the
mid-latitudes. However, tree growth may be influ-
enced by a multitude of factors, especially in mesic
Northeastern forests, where ring width is rarely associ-
ated with a single climate variable (Cook and Jacoby
1977, Conkey 1979, Pederson et al 2004). Though
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Figure 1. Map of tree-ring chronologies locations. The color of the circle reflects the Pearson correlation coefficient (r) between ring
width and local average January through August temperature from the nearest grid points from the GISTEMP temperature product
(Hansen et al 2010). Updated and recollected sites Appleton, ME (APB), Saco Heath, ME (SAC), and Westminster, MA (WMS) used
for our reconstruction are labeled in red (Hopton and Pederson 2005). Green hatching indicates the species distribution as defined by
the US Forest Service (Little 1978).

successful drought reconstructions using tree-rings
from the eastern United States exist (Cook et al 1999),
the mixed climate sensitivity of eastern US species
limits opportunities for skillful broad-scale paleotem-
perature reconstructions over the region (Mann et al
2009, Trouet et al 2013, Anchukaitis et al 2017) and
there remain substantial uncertainties about the range
of natural temperature variability due to the paucity of
temperature-sensitive proxy records in the region.

AWC is a shade semi-intolerant tree found in
wetlands along the United States’ east coast rarely fur-
ther than 200 km from the ocean (Laderman 1989,
Gengarelly and Lee 2006). In the Northeast, AWC
is restricted to areas too wet for other species, often
with standing water for over half the growing season
(Laderman 1989, Motzkin 1990, NHESP 2007). Given
the abundant moisture in these forests, AWC growth
might a priori be expected to depend less on precip-
itation and more on temperature (Linderholm et al
2002, Jean and Bouchard 1996). Preliminary research
by Hopton and Pederson (2005) showed that AWC
tree rings contained one of the strongest positive rela-
tionships to temperature in the Northeast. However,
previous dendroclimatology research with other wet-
land trees has shown ring-width in those species to have
a significant precipitation signal (Stahle and Cleaveland
1992, Stahle et al 2012). We hypothesize that precipita-
tion is a secondary and weaker signal in AWC and that
the common dominant broad-scale signal preserved
in the ring width of these trees across the region is
temperature (Linderholm et al 2002).

The potential uniqueness of this proxy lies both
in the ability to extract a strong regional temperature
signal as well as to extend the reconstruction through
the Holocene using preserved sub-fossil wood. Here
we examine a network of living Northeastern AWC
tree-ring chronologies to understand the spatiotempo-
ral characteristics of the species’ climate signal, analyze
tree-ring width chronologies at three sites in Maine
and Massachusetts, and then use these to reconstruct
regional temperatures. Our results demonstrate the
utility of AWC as a temperature proxy in the North-
eastern United States.

2. Methods

2.1. Studysites and sample treatment
Initial AWC collections at eight sites throughout the
Northeast were made between 2002 and 2003 (Hop-
ton and Pederson 2005). In 2015 we updated and
re-sampled three of these locations: Appleton, Maine,
Saco Heath, Maine, and Westminster, Massachusetts
(figure 1). These sites are in the northern region of the
species range, with the forest in Appleton representing
the northernmost known stand of thespecies (Stock-
well 1999) (figure 1) and are relatively undisturbed by
anthropogenic influences (Hopton and Pederson 2005,
Pederson et al 2004) (table 1).

At the re-collected sites, AWC dominates the
canopy and is largely even-aged.The Appleton,ME, site
is a bog in the headwaters of the St. George River with
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Table 1. AWC site characteristics.

Site code Latitude, longitude Elevation Trees sampled Time span

APB 44.55 N, 69.26 W 100 m 40 1859−2014
SAC 43.53 N, 70.45 W 46 m 36 1872−2014
WMS 42.52 N, 71.93 W 336 m 36 1845−2014

a ground layer of Sphagmnum moss and fern species.
Saco Heath, ME, is the only known domed bog to con-
tain AWC, and is possibly the southernmost coalesced
bog in the eastern United States (Laderman 1989). Saco
Heath contains scattered aggregations of trees through-
out as well as other areas of dense shrub dominated by
blueberry (Vaccinium ssp.L.). AWC collected in West-
minster, MA, are in a topographically depressed swamp
environment that borders a wetland and ponds system.
The Westminster swamp is considered to be a high ele-
vation inland AWC swamp (NHESP 2007) (table 1)
with interspersed tamarack (Larix laricina), red maple,
and red spruce (Picea rubens Sarg.). All three sites stay
wet for most, if not all, of the growing season, supplied
with water from rainfall as well as flow from nearby
rivers or ponds.

We collected AWC samples following standard
dendrochronological techniques (Fritts 1976, Stokes
and Smiley 1968), taking two to three increment cores
per tree, then drying, mounting, and sanding the incre-
ment cores. To ensure we assigned the correct year to
each annual ring, the increment cores were graphically
and visually crossdated (Stokes and Smiley 1968, Yam-
aguchi 1990). Ring widths were measured at 0.001 mm
precision and crossdating was statistically confirmed
using COFECHA (Holmes 1983).

2.2. Chronology development and standardization
To remove the geometric growth trend and isolate the
climate signal in the tree-ring series, we detrended
and standardized the width measurements into site
chronologies at all eight sites using both a standard
negative exponential or linear growth curve (NEGEX)
as well as a signal free method (SF) (Melvin and Briffa
2008, Briffa and Melvin 2011). Our tree-ring series
all originate from living, mature, and canopy dom-
inant conifers, which typically and historically have
been treated with a NEGEX curve to retain climate
signals (Fritts 1976). More recently, signal-free stan-
dardization has been developed to attempt to avoid
possible trend distortion or end effects related to the
presence of common medium-frequency variability
(Melvin and Briffa 2008, Briffa and Melvin 2011).
To account for changes in the number of series back
in time, the variance in the chronologies was stabi-
lized based on the interseries correlation (Cook et al
1995) and a 67% spline (Osborn et al 1997, Cook
and Peters 1981, 1997). We used the autoregressive
(AR)-standardized version of the chronology for our
climate analysis to preserve the common autoregres-
sive structure of the tree-ring data due to variations in

climate (Cook 1985). We assessed the common sig-
nals in the tree-ring chronologies using the interseries
correlation and expressed population signal (EPS)
statistics. Interseries correlation is the mean correla-
tion between all the cores. EPS indicates how well
the sample of trees estimates the signal of a hypo-
thetical population and is a function of sample size
and interseries correlation (Wigley 1984). The length
of the chronologies were limited to years where EPS
values are at least 0.85, the conventional although
arbitrary threshold value (Wigley 1984). We created
a Northeast regional chronology for large-scale spatial
climate analysis by averaging the ring-width measure-
ments of the three updated sites (Appleton, Saco,
Westminster) to create a single series (the ‘regional
chronology’). To detect possible disturbance signals in
our regional chronology, we analyzed the individual
series that composed the region chronology using both
the Nowacki and Abrams’ criteria 1997, and that of
Lorimer and Frelich 1989.

2.3. Climate data analysis
We analyzed the association between tree-ring
chronologies and local climate using gridded monthly
temperature anomalies data from the NASA GISTEMP
combined 250 km product(Hansen et al 2010), gridded
monthly precipitation data from version 7 of the Global
Precipitation Climatology Center (GPCC Schneider
et al 2016), gridded sea surface temperatures from the
UK Met Office Hadley Centre sea surface tempera-
ture (HADISST Rayner et al 2003). We calculated an
Atlantic Multidecadal Oscillation (AMO) index using
a weighted average of the UK Met Office Hadley Cen-
tre sea surface temperature gridded product for the
Atlantic from 0◦ N−70◦ N (Rayner et al 2003, Enfield
et al 2001). We performed seasonal correlation anal-
yses as described by Meko et al (2011) to calculate
the both the Pearson correlation and partial correla-
tion coefficients of the chronologies with monthly and
seasonal temperature and precipitation. Statistical sig-
nificancewasevaluatedusingexact simulation(Percival
and Constantine 2006, Meko et al 2011). We computed
seasonal correlations for our regional chronology based
on temperature and precipitation averages over an area
spanning from 41◦ N−48◦ N and 74◦ W to 62◦ W.
To understand the spatial extent of the temperature
signal in our trees, we calculated the Pearson correla-
tion of the regional chronology with the GISTEMP
temperature field. Pointwise statistically significant
correlations were determined using the approach
described by Ebisuzaki (1997).
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2.4. Temperature reconstruction
Based on our site-level climate analysis, we recon-
structed regional mean January through August
temperature for the region from 41◦ N−48◦ N and
74◦ W to 62◦ W using a nested composite-plus-scale
(CPS) approach (Meko 1997, Esper et al 2002, Cook
et al 2002, Esper 2005). This method scales the tree-
ring series to the mean and standard deviation of
the instrumental observations during the calibration
period, and then evaluates the fit between tree-ring
reconstructed temperatures and the instrumental data
during the validation period. We tested the sensitivity
of the reconstruction to both our choice of detrend-
ing method and to the inclusion or exclusion of data
from each of the three individual updated sites. We
built reconstruction models using three nests (all of
the recollected sites) and two nests (only the Maine
sites), as well as building a reconstruction model for
both SF and NEGEX chronologies. We used a split cal-
ibration/verification (1900−1955 and 1956−2010) to
train and evaluate our models (Michaelson 1987, Meko
1997). We estimated the uncertainty of our recon-
struction from the root mean square error (RMSE) of
validation. The variance explained by our reconstruc-
tion was quantified using the R2 statistic. We also used
the reduction of error (RE) and coefficient of efficiency
(CE) statistics toestimate reconstructionskill,withpos-
itive RE and CE values indicating the reconstruction
performed better than a naive estimate of the mean
(Cook et al 1999, Wahl and Ammann 2007).

3. Results

3.1. Climate signals
There is a clear trend of increasing temperature cor-
relation with higher latitudes in our extended AWC
network (figure 1). However, this trend is not mono-
tonic; the AWC series from Saco Heath has the highest
correlation with winter-through-summer temperature
but is at a lower latitude than the northernmost Apple-
ton site. The cluster of sites near 41◦ N all have
correlations with temperature less than r = 0.35. Our
seasonal correlation analyses (figure 2) confirm that
local temperature has the strongest correlation with
the northern three sites and our temperature-sensitive
AWC series show a broad winter-through-summer
sensitivity with a peak seasonal correlation with mean
temperatures in January through August (Hopton and
Pederson 2005). Whilering widths of trees growing
in cold environments generally reflect growing season
spring and summer temperatures, tree-ring width can
also be influenced by temperatures in the prior winter
months (Jacoby et al 1996, Pederson et al 2004).

The Appleton site has significant correlations with
January–September temperatures, with the strongest
correlations in the early spring. Appleton shows
no significant precipitation partial correlation (figure
2(a)). Saco Heath has the highest correlation values

with temperature, with seasonal correlations reach-
ing r = 0.66 (figure 2(b)). The site also has statistically
significant secondary and partial correlations with pre-
cipitation, especially in summer. Westminster swamp
shows positive and significant winter through summer
temperature correlations, and a seasonally narrow but
significant summer precipitation signal (figure 2(c)).

3.2. Regional chronology
Our complete regional chronology consists of 232 cores
from 116 trees at three sites, with a series mean inter-
correlation value of r = 0.49 over a common period of
170 years, from 1845−2014, and EPS values over 0.95
back to 1860 (Wigley 1984). No significant endogenic
disturbance was detected in the chronology. We found
that both SF and NEGEX chronologies had high Pear-
son correlations to regional temperature, but the SF
detrending procedure increased the amplitude of the
early and late ring-widths beyond reasonable growth
patterns for the species (Cook et al 1995). Conse-
quently, we used the NEGEX detrended chronologies
for the remainder of our analysis and reconstruction,
which preserved low frequency signals without exag-
gerating the growth trend over recent decades.

Similar to the individual sites of which it is
composed, the strongest seasonal temperature sig-
nal for the regional chronology spans from winter
through the end of the growing season (figure 3).
The regional chronology also shows broad and sig-
nificant correlation with temperature spatially, with
significant correlations over eastern New England and
with particularly high correlations of r > 0.50 over
the adjacent North Atlantic to 65◦ W (figure 4, fig-
ure 6). Correlations over land cease to be significant
south of Long Island, NY, but continue north of
Maine into Canada. WesternNew England still has field
correlation values over r = 0.4, but these fail to be statis-
tically significant when accounting for autocorrelation
(Ebisuzaki 1997).

3.3. Reconstruction
A skillful reconstruction of January through August
mean temperature is possible using the two Maine
tree-ring sites back to 1872, when the Saco Heath
chronology currently ends (figure 5). Our model has
positive RE and CE scores of 0.33 and 0.08, respectively,
and an r2 value of 0.34 from 1872−2014. Results of our
cross validation for a three site (including Westmin-
ster) reconstructionhad positive RE and CE values with
an early validation period and late calibration period,
but slightly negative CE values with a reversed cali-
bration and verification period. These low frequency
metrics can be sensitive to the calibration/verification
period—particularly CE (Wahl and Smerdon 2012,
Wahl and Ammann 2007)—and we found that rela-
tively small shifts in thecalibration/validation period
affected these statistics. Our sensitivity tests using
SF instead of NEGEX chronologiesall yielded neg-
ative cross-validation RE and CE scores, indicating

4
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(A)

(B)

(C)

Figure 2. Seasonal correlations and partial correlations (Meko et al 2011) of the (a) Appleton, ME (b) Saco Heath, ME and (c)
Westminster,MAchronologieswith regional temperature andprecipitation.The top line shows the correlation between the chronology
and monthly temperatures. The bottom line shows the partial correlations between the chronologies with monthly precipitation. Both
variables are shown for 1, 3, 9 and 12 month long seasons. For seasonal analysis, the month indicates the last month of a seasonal mean
of the given length.

that low frequency behavior and detrending choices
in this chronology strongly influenced reconstruction
skill.

Our skillful reconstruction of Northeast tempera-
ture tracks instrumental temperature within± 1 RMSE
for most of the calibration and validation period. The
tree-ring reconstruction captures both the long-term
century-scale trend as well as multidecadal variabil-
ity. Our chronologies have somewhat smaller rings in

the earliest 1920s, latest 1960s, and late 1990s, com-
pared to observed temperatures. The reconstruction
shows a decade and a half of relatively stable mean
temperatures from the late 1870s to the 1900s, prior to
our calibration and validation periods, but indicate-
cold winter-through-summer temperatures in 1866
and 1868. However, in this portion of our recon-
struction the skill is reduced because the Saco Heath
chronology does not cover this period.
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Figure 3. Correlations and partial correlations (Meko et al 2011) of the regional chronology with NE temperature and precipitation.
The top row shows the Pearson correlation between the chronology and monthly or seasonal temperatures. On the bottom row the
partial correlations between the chronologies with monthly or seasonal precipitation. Both variables are shown with1, 3, 9 and 12
month seasons. For seasonal analysis, the month indicates the last month of a seasonal mean of the given length.
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Figure 4. Field correlation between January through August mean temperature from GISTEMP (Hansen et al 2010) and our regional
AWC chronology. Locations of the individual sites included in the chronology are indicated by the stars. Colors show the correlation
and significant (p < 0.05) grid cells are stippled. Significance levels are calculated account for the strong degree of autocorrelation
using the method described by Ebisuzaki (1997).

4. Discussion and conclusions

The annual growth rings of AWC are significantly
correlated with mean January–August temperatures
across New England, incorporating a sensitivity to win-
ter temperatures prior to the growing season (figure
2). Cold winter temperatures and heavy snow packs
have been shown to limit annual growth in temper-
ate species by sustaining low soil temperatures and
delaying the onset of radial growth (Brubaker 1980,
Gedalof and Smith 2001, Peterson and Peterson 2002,

Pederson et al 2004). The strongest temperature sig-
nals are observed at the higher latitude and interior
sites (figure 1, table 1) and allow for a skillful cross-
validated temperature reconstruction. However, there
is not a simple spatial pattern to the local temperature
correlation related to latitude, nor distance from the
coast.

We hypothesized that AWC growth should have a
primary temperature signal and a reduced sensitivity
to precipitation variability, since the species’ environ-
ment appears to provide consistent access to water
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Figure 5. Nested CPS reconstruction of mean January–August temperature anomalies with two chronologies, Appleton and Saco
Heath. Anomalies calculated as deviations from 1951−1980 means. Target instrumental data is shown in red, reconstruction record
from tree-ring widths in black. The shaded uncertainty represents ±1 root mean square error (RMSE) of validation.
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Figure 6. Mean January–August sea surface temperature simple correlations with the regional chronology. Sea surface temperature
data from UK Met Office Hadley Centre (HadISST1 Rayner et al 2003).

(Laderman 1989). However, different hydrological
conditions between sites may distinguish their climate
response. Appleton and Westminster swamp have a
minor and largely insignificant secondary precipitation
signal (figure 2(a), (c)), while there are significant par-
tial correlations to precipitation at Saco Heath (figure
2(b)), which also has the strongest temperature signal.
Hopton and Pederson (2005) proposed that a precipi-
tation signal at Saco Heath could arise due to its unique
domed-bog environment. Domed-bogs are formed by

the accumulation of peat over time, eventually perch-
ing the ecosystem above the regional water table. These
environments thereafter rely on precipitation for water,
and have been shown to be sensitive to changes in
the water table, possibly explaining the secondary pre-
cipitation influence at Saco Heath (Laderman 1989,
Hopton and Pederson 2005, Linderholm et al 2002,
Boggie 1972, Bouriaud et al 2014, Jean and Bouchard
1996). AWC sites located in New York, New Jersey,
and Connecticut all have lower correlations with local
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temperatures (figure1), irrespectiveofhydrological set-
ting. The observed sensitivity to individual site factors
across New England indicates that the climate response
of AWC varies in response to local conditions, which
can guide further sampling and the choice of climate
reconstruction targets.

Our analysis shows broad and statistically sig-
nificant spatial correlations between our regional
chronology and surface temperature across New Eng-
land and the adjacent Atlantic Ocean (figure 4). This,
and the multidecadal variability in our temperature
reconstruction, prompted us to compare the regional
chronology with an index of the AMO. Our tempera-
ture has a positive but weak correlation with the AMO
index (r = 0.26), primarily due to differences between
the AMO, regional chronology, and regional tempera-
ture variability between 1960 and 2000 (Kushnir 1994,
Kerr 2000, Enfield et al 2001). The correlation is simi-
larly weak between the instrumental data itself and the
AMO index (r = 0.14). Therefore, despite some sim-
ilarities, the low correlation between the AMO index
and our reconstruction (or with the instrumental tem-
perature target itself) demonstrates that New England
temperatures have epochs of decadal variability distinct
from the basin-wide mean North Atlantic sea surface
temperature (SST) signal. This is related to the spatial
structure of the SST relationship (figure 6), which not
surprisingly has the strongest associations with tree-
ring reconstructed temperatures along coastal New
England and in the western Atlantic, but weak corre-
lations elsewhere. In contrast, the correlations between
the AMO index itself and the SST field from which it
is derived is strongest in the eastern tropical and extra-
tropical North Atlantic (Kushnir 1994, Alexander et al
2014). Our analysis shows that AWC chronologies can
be used in regional temperature reconstructions and
capture multidecadal temperature variability, but also
highlights the challengeof linking large-scale featuresof
North Atlantic ocean–atmosphere variability (includ-
ing AMO) to terrestrial paleotemperature proxies in
the eastern United States (Cook et al 2002).

AWC ring widths can be used to skillfully recon-
struct January through August mean temperature
signal over New England (figure 5). There are, how-
ever, periods with disagreements between the tree-ring
estimated and recorded temperature. The largest of
these occurs in the late 1910s and early 1920s. Raney
et al (2016) note that conifers in wetland environ-
ments can be sensitive to fluctuations in groundwater
hydrology; however, we do not find any influence of
local hydrology in our tree-ring records. Despite the
history of commercial AWC exploitation in New Eng-
land, we found no evidence of widespread or large scale
drainage changes or logging at any of the sites, and
we detected no disturbance related growth patterns in
the ring-widths themselves. Local influences related to
ecosystem processes or natural stand dynamics appear
to be the mostly likely source of non-temperature vari-
ability at our northern sites. We found that the use of

SF instead of traditional NEGEX chronologies results
in an overestimation of recent temperature trends and
a lack of reconstruction skill. The cause of this detrend-
ing behavior is not known, but could be related to our
generally even-aged stands (Melvin and Briffa 2014).
Additional investigation isneeded to identify the source
of this bias.

Skillful reconstructions based on tree-ring width
are needed to help understand the climate history of
the region.Our findings here support the continued
development of a long-term AWC record from New
England. Historically, AWC was highly valued as a tim-
ber product and the harvesting of AWC ecosystems for
lumber and the draining for agriculture led to a loss of
AWC swamps in the Northeast (Emerson 1981, Lader-
man 1989). However, sub-fossil wood found across the
region buried and preserved in bogs and swamps can
provide proxy data covering the last several millennia
or more (Bartlett 1909, Heusser 1949, Laderman 1989).
Further collection and analysis of northern AWC trees
and a concerted effort to extend these chronologies
using subfossil material will substantially enhance the
region’s Holocene paleotemperature record.
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