Quantifying overwash flux in barrier systems: An example from Martha's Vineyard, Massachusetts, USA

Emily A. Carruthers 1, D. Philip Lane 2, Rob L. Evans *, Jeffrey P. Donnelly, Andrew D. Ashton

Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States

A R T I C L E I N F O

Article history:
Received 18 September 2012
Accepted 31 May 2013
Available online 14 June 2013

Communicated by J.T. Wells

Keywords:
overwash flux
barrier system
sea-level rise
storm impacts
coastal evolution

A B S T R A C T

Coastal barriers are particularly susceptible to the effects of accelerated sea-level rise and intense storms. Over centennial scales, barriers are maintained via overtopping during storms, which causes deposition of washover fans on their landward sides. Understanding barrier evolution under modern conditions can help evaluate the likelihood of future barrier stability. This study examines three washover fans on the undeveloped south shore of Martha's Vineyard using a suite of vibrocores, ground penetrating radar, high resolution GPS, and LiDAR data. From these data, the volumes of the deposits were determined and range from 2.1 to 2.4 × 10^4 m^3. Two of these overwash events occurred during Hurricane Bob in 1991. The water levels produced by this storm have a calculated return interval of ~28 years, implying an onshore sediment flux of 2.4–3.4 m^3/m/yr. The third washover was deposited by a nor'easter in January 1997, which has a water level return interval of ~6 years, suggesting a flux of 8.5 m^3/m/yr. These onshore fluxes are smaller than the erosional flux of sediment resulting from shoreline retreat, suggesting that the barrier is not in long-term equilibrium, a result supported by the thinning of the barrier in recent years.

1. Introduction

Barriers form 10–13% of the world’s coastlines (Cromwell, 1971; Stutz and Pilkey, 2011), with 76% of barriers occurring along rifted continental margins, like that of the US Atlantic Coast, which have wide depositional shelves, a wide flat coastal plain, and large supplies of available sediment (Inman and Nordstrom, 1971; Glaeser, 1978). Most barrier islands are located in areas that have undergone marine transgression, a rise in relative sea level causing a shift of the shoreline in the landward direction (Davis, 1985). In order for barriers to retreat and be sustained during conditions of sea-level rise, sediment must be transported from the nearshore and foreshore of the barrier to the backbarrier (Fisher and Simpson, 1979). Mechanisms for this landward sediment transport include transport through tidal inlets, including those of temporary inlets cut by storms, overwash of sand during storms, and aeolian transport (Boothroyd et al., 1985; Leatherman, 1985). The importance of overwash is amplified as sea-level rise accelerates because an increased rate of transgression typically leads to more frequent overwash events (Viles and Spencer, 1995). Different locations along the coast are influenced by unique combinations of sea-level rise rates, tidal range, storm tracks, wind and wave regimes, and sediment supply such that the dominant mechanism of barrier retreat is unique to each environment (Leatherman, 1985). On undeveloped coasts overwash typically dominates, causing barriers to “roll over” (Dillon, 1970; Dolan and Godfrey, 1973; Schwartz, 1975; Byrnes and Gingerich, 1987). Overwash is most frequent on the Atlantic and Gulf coasts of the US along sandy barriers. Here, it results from a combination of hurricanes and winter northeast storms (Donnelly et al., 2006).

 Numerous studies have quantitatively explored barrier evolution. These models of barrier transgression are typically geometric modifications and extensions of the Bruun (1962) rule based upon the maintenance of an equilibrium shoreface shape. Mass conservation suggests that a wave-affected shoreline will recede as well as passively flood in response to sea-level rise; overdeepening of the shoreface causes sediment to migrate offshore. In the absence of overwash, the shoreline is expected to retreat according to the slope of the shoreline. Over longer timescales, and when overwash occurs, barrier coasts are expected to respond to sea-level rise in more complex ways. Equilibrium geometry concepts predict a more rapid shoreline retreat for transgressing barriers than for a shoreline without a barrier (Dean and Maumeyer, 1983). Analytical approaches based on mass and shape conservation demonstrate that over transgressional timescales the morphology landward of the barrier controls the ultimate path of the shoreline, and the shoreface slope becomes unimportant (Wolinsky and Murray, 2009). This behavior can be seen in other numerical models of geometric barrier evolution due to sea-level rise over centennial and longer timescales (Cowell et al., 1995; Stolper et al., 2005; Moore et al., 2010). Morphodynamic modeling (Ashton and Ortiz, 2011) demonstrates that overwash and shoreface fluxes are intimately coupled, and that over hundreds to thousands of years timescales, overwash must dominate barrier response (and be sufficiently high) for barriers to remain...
Overwash occurs when water levels rise over the top of the barrier (Sallenger, 2000) impact scale; Donnelly et al., 2006). When many small waves run-up cause a flow of sediment-laden water to overtop a barrier, transporting sediment to the backbarrier. Overwash refers to the deposit of sediment landward of the beach caused by overwash (Schwartz, 1975; Leatherman, 1983), though these are not always seen in sediment cores (Leatherman et al., 1977; Boothroyd et al., 1985). The initial events of overwash can erode the throat and pre-overwash surface in the backbarrier, resulting in a reactivation surface (Pierce, 1970; Kochel and Dolan, 1986). This erosional surface can be observed in sediment cores if the washover extends into a backbarrier lagoon or pond as an abrupt contact between the washover sands and underlying mud (Donnelly et al., 2001a,b). This contact and the internal laminations of the washover can also be seen clearly using ground penetrating radar (GPR) (Buynevich et al., 2004; Baker et al., 2007).

The size of the washovers is determined by the path and strength of the storm, particularly surge and waves (Kochel and Dolan, 1986; Liu and Pearn, 2000). The size and shape of the deposit is also controlled by backbarrier morphology and vegetation (Donnelly et al., 2006). Leatherman (1976, 1979a) indicates that the volume of the washover is most dependent on storm surge height with the other factors holding less importance. Morton and Sallenger (2003) note that washover volumes are related to the type of washover, increasing from confined fans, to terraces, to sheet overwash deposits.

1.2. Previous studies of washover volumes

Previous research on washover volumes has largely been conducted on barriers on the mid-Atlantic Coast, specifically on or near Assateague Island, MD (see Table 1 for details). These studies have typically relied on a combination of sediment cores, aerial photos, and topographic profiles to estimate deposit volume. Some use only average washover thicknesses, combined with inland penetration distances or area derived from aerial photos, to derive a volume of sediment (Morton and Sallenger, 2003). Others have used single or multiple pre- and post-overwash profiles multiplied by a unit width of barrier to arrive at deposit volume estimates (e.g. Schwartz, 1975; Leatherman, 1976; Fisher and Stauble, 1977; Leatherman, 1979a). These studies provide estimates of washover volume, but typically do not take into account the three-dimensional variability of the pre- and post-storm topography (Morton and Sallenger, 2003). In contrast, Kochel and Dolan (1986) installed a grid of colored sediment plugs across older washovers to determine the thickness of the subsequent deposits in the same area. They produced a contoured isopach map which accounted for spatially variable deposit thickness. Stockdon et al. (2007) also took the three-dimensional nature of deposits into account when determining their volumes by subtracting pre-overwash from post-overwash LiDAR topography data in order to arrive at a volume of sediment that was deposited over a large region that included a washover. The normalized volume values of washover deposits are typically tens of m3/m (Table 1.). Volumes greater than 100 m3/m are uncommon and are associated with confined overwash flows constricted laterally by high topography or channelization.

![Schematic of various types of washovers described in text.](image)

After Donnelly et al. (2006).
2. Study area

South Beach is a 25-km-long barrier located on the south-facing coast of Martha’s Vineyard, a glacially-derived island located ~8 km south of Cape Cod, Massachusetts, USA (Fig. 2). The island is composed almost entirely of large terminal moraines and glacial outwash deposits predominantly during the last (Wisconsinan or Marine Isotope Stage 2) glaciation (Oldale, 1982). Central and southern Martha’s Vineyard is composed of an expansive outwash plain that formed during local stagnation and retreat of the ice sheet lobes (Oldale, 1982). This outwash plain is composed of stratified sand and gravel deposits and contains numerous long north–south trending ponds (Woodworth and Wigglesworth, 1934). The barriers forming South Beach originally were thought to have formed offshore and migrated landward due to sea-level rise until they came in contact with the headlands of the drowned valleys (Woodworth and Wigglesworth, 1934). FitzGerald (1993) hypothesized that sediment eroded from the headlands between the bays would have provided material for the growth of spits across the mouths. Then, as sea-level rise continued, these spits migrated onshore, reducing the bay tidal prisms until inlets could no longer be maintained, and the continuous expanse of South Beach developed. The small bay areas, low tidal range, and strong longshore currents make inlets on South Beach ephemeral (FitzGerald et al., 1994) indicating that overwash processes must be the dominant mechanism for sediment reach to the backbarrier.

Modern South Beach is backed by one saline bay (Katama Bay), two large brackish ponds (Tisbury and Edgartown Great Ponds) and numerous small salt- and fresh-water ponds. Ephemeral inlets form at the openings to the larger ponds, occasionally disrupting the otherwise continuous stretch of South Beach. These inlets are generally formed in response to storms with the exception of an anthropogenic inlet on the eastern side of the barrier fronting Edgartown Great Pond (Fig. 2). For 11 years between 1997 and 2008, this inlet was opened an average of 2.5 times per year and remained open for an average of 12.5 days to allow for the maintenance of salinities and nutrient levels necessary to facilitate shellfish production in the pond (pers. com. William Wilcox, 2011).

The south shore of Martha’s Vineyard is a mixed energy, wave-dominated (Hayes, 1979), microtidal (mean tidal range: 0.6 m; NOAA, 2010) coast. The shoreface (extending to the barrier toe) dips at an angle of ~1° to a depth of ~10 m (Cheung et al., 2007), then decreases to ~0.1° offshore to at least 20 m contour. Waves are dominantly from the south, which sets up an easterly longshore current on South Beach (up to ~0.5 m/s; Ogden, 1974). Sediment eroded from South Beach is carried by this current and deposited southeast of Chappaquiddick to form the Shoals Shoal and the ephemeral Ship’s Island (Ogden, 1974). As expected from the large amount of sediment deposited to form the shoal, South Beach has undergone high rates of erosion. Average retreat rates for the south shores of Martha’s Vineyard and Nantucket over the past two centuries are 1.4 m/yr (Hapke et al., 2010). Strong northeast storms (nor’easters) also greatly impact New England each winter (up to ~0.5 m/s; Ogden, 1974). Sediment eroded from South Beach is carried by this current and deposited southeast of Chappaquiddick to form the Shoals Shoal and the ephemeral Ship’s Island (Ogden, 1974).

The south shore of Martha’s Vineyard is a mixed energy, wave-dominated (Hayes, 1979), microtidal (mean tidal range: 0.6 m; NOAA, 2010) coast. The shoreface (extending to the barrier toe) dips at an angle of ~1° to a depth of ~10 m (Cheung et al., 2007), then decreases to ~0.1° offshore to at least 20 m contour. Waves are dominantly from the south, which sets up an easterly longshore current on South Beach (up to ~0.5 m/s; Ogden, 1974). Sediment eroded from South Beach is carried by this current and deposited southeast of Chappaquiddick to form the Shoals Shoal and the ephemeral Ship’s Island (Ogden, 1974). As expected from the large amount of sediment deposited to form the shoal, South Beach has undergone high rates of erosion. Average retreat rates for the south shores of Martha’s Vineyard and Nantucket over the past two centuries are 1.4 m/yr (Hapke et al., 2010).

South Beach is open directly to the Atlantic Ocean and is therefore very susceptible to the impacts of large storms. Since 1848 there have been 88 tropical storms and hurricanes to pass within 150 km of Martha’s Vineyard. Of these, only 8 have been category 4 or higher, 53 were between categories 1 and 3, and 27 were tropical storms (Knapp et al., 2010). Strong northeast storms (nor’easters) also greatly impact New England, typically between October and April. Currently, 10–11 strong nor’easters (winds in excess of 45 kt) impact New England each winter (Frumhoff et al., 2007). It is both of these storm types that cause the overwash along South Beach. This study examines overwash fan deposits located in three ponds backing South Beach: Big Homer’s Pond, Long Cove Pond, and Edgartown Great Pond (Fig. 2, Table 2).
3. Methods

3.1. Field methods

Three washover fans were identified on the south shore of Martha’s Vineyard from aerial photographs. The field investigation of these fans consisted primarily of coring, ground penetrating radar measurements (GPR), and differential global positioning system (dGPS) surveys (Fig. 3). Most field work was conducted in early August of 2009, with return trips to extend spatial coverage of data in July and September of 2010.

A total of 35 vibracores were collected in each pond (using a standard vibracore system from a floating raft) in a radiating grid pattern. Due to the sandy nature of the subsurface, the cores were fairly short, ranging from 39 to 301 cm with an average core length of about 130 cm. All of the sediment cores were visually described for macro structure, color, and grain size. Color descriptions were made using Munsell color standards (Munsell, 2000) and bulk grain size was determined by comparing samples with known standards at 10× magnification. In addition, all cores were scanned using an ITRAX XRF core scanner for radiographic images (step size 200 μm).

GPR was taken on the subaerial portion of each fan using a Malå Geoscience 250 MHz antenna (transmitter and receiving antenna within a single housing), with some lines taken with 500 and 800 MHz antennae at Edgartown Great Pond. GPR was also collected with the 250 MHz antenna floating on an inflatable raft on Big Homer’s Pond and Long Cove Pond. All GPR data taken on land were distance-triggered with a wheel, while those taken in the ponds were time-triggered. A total of almost 5000 m of GPR profile was taken on land at Edgartown Great Pond, >600 m at Long Cove Pond, and >900 m at Big Homer’s Pond. More than 11,000 m of GPR data were taken through the water column at Long Cove Pond and >5000 m was taken at Big Homer’s Pond. This technique provided excellent bathymetry throughout the two ponds, as well as

![Location map of study area on Martha’s Vineyard, MA. The location is indicated by the black box in the inset. Bottom figure shows zoomed-in area indicated by the white box in the top figure. The three ponds of interest are indicated in the bottom figure with the washovers at each pond indicated by the black circles. Top figure is modified from Google Earth™ and bottom figure is modified from 2008 orthophotos from MassGIS.](image)

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Big Homer’s Pond</th>
<th>Long Cove Pond</th>
<th>Edgartown Great Pond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approx. pond area</td>
<td>154,000 m²</td>
<td>320,000 m²</td>
<td>3,400,000 m²</td>
</tr>
<tr>
<td>Fronting barrier length</td>
<td>220 m</td>
<td>340 m</td>
<td>2400 m</td>
</tr>
<tr>
<td>Highest elevation on barrier</td>
<td>4.29 m</td>
<td>5.06 m</td>
<td>5.61 m</td>
</tr>
<tr>
<td>Lowest elevation on barrier</td>
<td>2.35 m</td>
<td>1.66 m</td>
<td>1.66 m</td>
</tr>
<tr>
<td>Approx. barrier width</td>
<td>75 m</td>
<td>75 m</td>
<td>105 m</td>
</tr>
<tr>
<td>Maximum pond depth</td>
<td>2.7 m</td>
<td>3.5 m</td>
<td>5.0 m</td>
</tr>
<tr>
<td>Number of inlets</td>
<td>0</td>
<td>0</td>
<td>1 (temporary)</td>
</tr>
<tr>
<td>Anthropogenic use</td>
<td>Some</td>
<td>Heavy</td>
<td>Some</td>
</tr>
</tbody>
</table>

a Section of barrier near fan of interest.
b Widths are of areas not containing washovers.
c Behind section of barrier containing fan of interest.
sub-bottom structure in shallow water, penetrating to a depth of about 4–6 m. Unfortunately, this method was not possible in Edgartown Great Pond due to its comparatively high salt water concentration. Penetration was also poor (~1 m) on the subaerial portion of this fan, likely due to the shallow salt water table. Instead, bathymetry at Edgartown Great Pond was determined acoustically using >3000 m of seismic data collected using a 10 KHz SyQuest StrataBox. Some internal structure of the fan was revealed by the excavation of an ~20 m long, up to ~1 m deep trench.

Modern surface morphologies of the fans were determined by taking dGPS surveys using a Trimble ProXRT with real-time corrections from OmniSTAR. The surveys had maximum vertical errors of between 10 and 30 cm and lateral positioning errors on the order of 10 cm. The surveys were taken on the subaerial portions of the fan as well as in the water, to bridge the data gap between the bathymetry provided by the GPR and Stratabox data and the topography available with LiDAR (JALBTCX, 2009). Spatial resolution of dGPS data was variable as the data were logged at about 1 s intervals, though a maximum of roughly 1–3 m spacing was achieved for the almost 9000 data points.

3.2. Data processing

GPR data were processed using DECO-Geophysical Ltd.’s RadExplorer software package. Processing typically included DC (mean) removal, time-zero adjustment, background removal, 2D spatial filtering, predictive deconvolution, amplitude correction using automatic gain control, bandpass filtering, Stolt F-K migration, and topographic correction. The topographic corrections were performed using LiDAR data or dGPS data, depending on the quality of the dGPS data which was affected by satellite geometry and periodic antenna obstruction. Time varying velocity models were constructed for data collected in the ponds with a velocity of 3.33 cm/ns used for the fresh water and 6.0 cm/ns used for the sediment. Although diffraction hyperbolas occurred infrequently in the data, this sediment velocity was based on hyperbolic velocity analysis of those that were found and applied to all saturated sediment. Reflections corresponding with surfaces of interest were picked in RadExplorer using a combination of manual and auto-fill parameters.

The Stratabox data were post-processed using Triton Imaging, Inc.’s SB-Interpreter software. Processing procedures were similar to those used to process GPR data and include flat and time-varying gain adjustment, bandpass filtering, and vertical downsampling. The sediment–water interface was picked manually.

After post-processing was complete, 3D locations and other spatially varying information (e.g., GPR trace numbers, dGPS accuracy) of all data were spatially analyzed in ArcMap. The geospatial reference frame of all the data collected was set to the Universal Transverse Mercator (UTM) coordinate system with the WGS84 ellipsoid, using Data East’s XToolsPro extension for ArcMap. Standard offsets between the different vertical datasets (pond surface, dGPS, and LiDAR) were determined by comparing as many overlapping points as possible (typically 15 to 50) and all data was vertically referenced to the water level in each pond.

3.3. Three dimensional surface calculations

Two surfaces were created using universal kriging for each pond: a modern surface and a pre-overwash surface. Surfaces were kriged using Golden Software’s Surfer8 program. The modern surfaces were kriged with data from GPR (Stratabox at Edgartown Great Pond), LiDAR, dGPS, and pond outlines picked from orthophotos in ArcMap. Pre-overwash surfaces were kriged with data from cores, GPR whenever possible, and
a zero elevation contour on all but the southern sides of the pond taken to be the location of the pond edge as determined from orthophotos.

Pre-overwash surfaces were subtracted from the modern surfaces to create isopach maps of the washovers. Ideally, beyond the extent of the washer, the pre-overwash and modern surfaces would be the same. Unfortunately, due to limited sediment core data coverage, the farthest landward extents of the washovers were not captured. Thus, the pre-overwash data includes a zero elevation contour at the distal pond edge as it is assumed that the washer did not extend past the edges of the pond. Consequently, the zero elevation contour causes the estimated pre-overwash surface to rise above the elevation of the modern surface past the extent of the washer because of the lack of data between the two regions (the washer and the zero elevation contour). This difference results in the negative points in the isopach map that mark the edge of the washer. These negative points are beyond the extent of the data coverage and were therefore discarded. The volume under the resulting map of the washer is then determined by numerical integration.

4. Results

4.1. General

The three ponds of interest to this study all display similar results. GPR data collected through the water column at Big Homer’s and Long Cove Ponds show weak reectivity with the exception of one strong reector seen at varying depths (Fig. 4A). Where this reector is shallow (less than about 3 m depth), some underlying reectors are visible. In contrast, GPR profiles collected both in shallow water (especially proximal to the fan) and terrestrially extend to a maximum of ~8 m, depending on the transmitted frequency.

The combination of radar and sediment core data allows us to define a series of four sedimentologic units labeled A–D, from bottom to top (example stratigraphy and GPR data typical of all three ponds shown in Figs. 4 and 5). Unit A is recognized in 19 cores as layers of coarse sand (0.5–224 cm thick) interbedded with one to 18 beds of either mud (1–113 cm thick) or occasional peat or shell hash. This unit is not visible in GPR profiles due to signal attenuation. Unit B is present in 17 cores and ranges in thickness from 1 to 103 cm. It is composed of massive silty clay with occasional flecks of decomposing organics. The GPR signal attenuates quickly in Unit B, a characteristic common to muddy environments due to the high conductivity of clay (Baker et al., 2007). Although little structure is evident in this GPR unit, any visible internal reflectors are generally horizontal. This unit typically has a sharp upper contact with Unit C in the cores, which is seen as a very strong reector in the GPR profiles (Fig. 4B, C). Unit C is seen in 29 cores and is composed of a poorly sorted, coarse to very coarse sand. This unit is generally massive, contains few heavy minerals, and varies from 3 to >126 cm thick in the cores, thickening southward to create a maximum of ~450 cm thick in the cores, thickening southward toward the barrier to reach a maximum of ~450 cm thick in the radar sections. Two of the cores are topped by a thin (1–2 cm) Unit D of very dark grayish brown (2.5Y3/2) saturated mud.

4.2. Big Homer’s Pond

Seven cores were collected at Big Homer’s Pond ranging in length from 60 to 280 cm long. Unit A is recognized in four cores as layers of coarse sand (51–224 cm thick) interbedded with one to five beds of either mud (3–9 cm thick) or occasional peat (12 cm). Unit B is present in five cores and ranges in thickness from 29 to 103 cm. It is composed of massive, very dark gray (2.5Y3/1; Munsell, 2000) silty clay with occasional flecks of decomposing organics. Unit C is composed of an olive brown (2.5Y4/4), poorly sorted, coarse to very coarse sand. This unit is generally massive, contains few heavy minerals, and varies from 14 to >126 cm thick in the cores, thickening southward toward the barrier to reach a maximum of ~450 cm thick in the radar sections. Two of the cores are topped by a thin (1–2 cm) Unit D of very dark grayish brown (2.5Y3/2) saturated mud.

4.3. Long Cove Pond

Twelve vibracores were collected at Long Cove Pond ranging in length from 39 to 301 cm. Unit A was seen in eight of the cores. Cores contain 1–18 beds in this unit, with 0.5–114-cm thick sand beds, 3–113-cm thick mud beds, and one instance each of solitary beds of mixed shell hash (19 cm thick) and peat (4.5 cm thick). Unit B is identified clearly in four cores. It is a massive very dark brown (10YR2/2) silty clay, 1 to >56 cm thick. When visible in radargrams, Unit B contains horizontal reflectors, though there is little signal penetration into the unit (Fig. 4). Seven cores contain the massive olive brown (2.5Y4/3) coarse sand typical of Unit C. This unit is 3 to >107 cm thick, increasing toward the south. Radar profiles indicate that Unit C reaches a maximum depth of ~450 cm at the southern edge of the fan. Shore-parallel radar profiles show an asymmetry in the thickness of the unit, with the thickest regions on the western side of the fan. The internal structure is seen as reflectors with Gaussian-like shapes, though the shape demonstrates a marked easterly skewness with much steeper maximum dip angles on the western side (~20°) than on the eastern side (~4°). Internal reflectors are more chaotic than at Big Homer’s Pond. In three of the cores, Unit C is overlain by the very dark grayish brown (2.5Y3/2) saturated mud of Unit D, ranging from a thin lens (<0.5 cm) to 3 cm thick. In four cores, Unit C is not present and Unit B grades directly to Unit D. The combined thickness of Units D and B in these cores is 2–18 cm.

4.4. Edgartown Great Pond

Sixteen vibracores were collected at Edgartown Great Pond, ranging from 48 to 158 cm in length. Due to the brackish water in this pond, maximum GPR penetration is only ~150 cm, and typically less than 100 cm. A shore-normal trench provided some insight into the top ~70 cm of the subaerial portion of the fan. Shallow seismic reflection profiles were used to map pond bathymetry. However, shallow multiples and a low signal to noise ratio prevented interpretation of subbottom data.

Unit A is identified in seven cores with 1–5 beds present containing sand layers ranging from 1.5 to 122 cm thick with occasional mixed shell hash and mud layers ranging from 1 to 8 cm thick. Eight cores contain the dark olive brown (2.5Y3/3) silty mud common to Unit B. These layers are 2 to >15.5 cm thick. One core contained shell hash mixed into this unit. Unit C is identified in 15 cores as a coarse to very coarse, light olive brown (2.5Y5/3) sand, 93–124 cm thick. Several cores contained shell fragments and pebbles in this unit. Unit C is identified in GPR profiles as a series of shallowly (~2°) northward dipping cliniforms. The bottom contact between Units B and C is not seen in the radargrams and only the top of Unit C is captured due to signal attenuation. The trench displays similar shallowly northward-dipping layers corresponding to those seen in radar reflectors. Only two cores contain the olive gray (5Y4/2) mud of Unit D, in one of these Unit C is absent so Unit B grades directly into Unit D. Here, these two units have a combined thickness of 11 cm.
5. Interpretation and discussion

5.1. Part I: interpretation of stratigraphy, calculation of washover volumes and sediment fluxes

The first step towards estimating onshore sediment flux caused by major storms, is to estimate the volumes of specific deposits. In calculating these volumes, this study considers the three-dimensional pre- and post-storm morphologies of the topographically low, southward-facing barriers of the southern coast of Martha’s Vineyard, MA. The second step is to estimate the recurrence intervals for storm events causing similar magnitudes of overwash so that a sediment flux across the barrier can be estimated. The fans described above were deposited in historic times by known storms (path and magnitude). This allows the use of meteorological and tide gauge data to estimate recurrence intervals of the surges that caused the deposits. These recurrence interval

Fig. 4. GPR profiles with sedimentary units identified. Vertical scale is referenced to each pond’s still water level. Box A: radargram from Long Cove Pond (location of line is indicated in box B) taken through the water column. Box C is a radargram from Big Homer’s Pond taken on land and topographically corrected. Location of line is given in Box D. Box E is a radargram from Big Homer’s Pond taken on land and topographically corrected (profile is flat). Location of line is given in box D.
estimates, combined with the volume of sediment transported, allows for a first-order estimate of the onshore flux of sediment from these overwash events to be calculated.

5.1.1. Interpretation of stratigraphic units

Stratigraphies interpreted from cores and radar data (Fig. 5) are similar across the ponds and are therefore interpreted to have resulted from the same processes. Unit A is interpreted to be sand deposited during earlier overwash events, interbedded with mud deposited in a quiescent lacustrine environment. Unit B represents mud deposited in the pond immediately prior to the deposition of the massive sands of Unit C. The sharp contact seen in cores and the strong reflector truncating underlying weak reflectors seen in radar images likely indicates a strongly erosional upper boundary created during the deposition of the overlying sediment. Unit C contains the sand of the washover deposit. We interpret the sigmoidal reflectors seen within the unit as clinoforms, which would suggest that the unit was first deposited in a small fan or tongue during the early stages of the overwash event. This fan then built laterally and vertically during the course of the overwash event, until a fan shape had developed. The steep reflectors near the bottom of the unit show the delta-like structure of the fan. The deposit thins distally to and along the barrier, and most sediment is deposited closer to the throat of the overwash fan. The thin sediment of Unit D is the modern pond mud.

5.1.2. Washover volumes

A few assumptions allow for the estimation of washover volumes from the detailed stratigraphic analyses at each of the three sites. First, the lower boundary of the deposit is taken to be the erosive contact between Units B (lacustrine mud) and C (washover sand). This surface is likely topographically lower than the actual pre-overwash surface, most likely due to scouring of the barrier and backbarrier pond during the initiation of the overwash event. Second, the portion of the washover that contributes to the landward migration of the barrier is taken as only that which is deposited landward of the pre-overwash surface. Taking the modern B/C contact as the pre-overwash topography results in larger volume estimates than the volume of sediment that was actually driven landward from the front of the barrier or offshore during the overwash event.

Another assumption is that any aeolian transport of sand that occurs concurrent with or following the storm is also included in volume calculation. This additional volume is not expected to greatly influence the volume calculation as the sediment found in the cores was not noticeably finer than the top of Unit C as would be expected with sediment deposited by aeolian transport.

A final source of error in estimating washover volume is specific to Edgartown Great Pond. Inclusive in the washover isopach is a small lobe of sediment on the eastern side of the deposit that does not appear to originate from the washover of interest, likely resulting from poor data coverage in this region. As seen in orthophotos, this sediment is likely derived from reworking of adjacent older overwash fans by local wind waves in the pond (Fig. 6C), as further evidenced by the concavity of the isopach map along that side of the fan. This sediment was excluded from the volume calculation. The difference in the total washover volume resulting from this truncation is only \(0.08 \times 10^4\) m\(^3\), or ~3%.
5.1.3. Dating the washovers and correlated storms

The timing of the most recent overwash events in the study areas was determined using aerial photos. Cheung et al. (2007) used aerial photos from March 1991 and November 1992 to bracket the overwash events at Long Cove and Big Homer’s Ponds to this period (Fig. 7). Hurricane records (specifically The Best Track Reanalysis Data from the National Oceanic and Atmospheric Administration’s (NOAA) National Hurricane Center; Neumann et al., 1993; Landsea et al., 2004) and monthly maximum water levels from two nearby tide gauges (Newport, RI and Woods Hole, MA; NOAA, 2011a,b) were used to identify the storm that produced the maximum surge at the location of the fan during the time interval defined by the aerial photos. Hurricane Bob was the strongest storm during this time period, though the Halloween Eve Storm (the “Perfect Storm”) of 30 October 1991 occurred in the same period. The tide gauge at Woods Hole, MA indicates that the Halloween Eve Storm produced significant storm tides of 0.94 m above mean high water (m MHW; NOAA, 2011b). However, the water level from this nor’easter was not as high as the 1.50 m MHW on 19 August 1991.

Table 3

<table>
<thead>
<tr>
<th>Pond</th>
<th>Volume (10^4 m3)</th>
<th>2D surface area (10^4 m2)</th>
<th>Maximum thickness (m)</th>
<th>Average thickness (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Homer’s Pond</td>
<td>2.1</td>
<td>1.5</td>
<td>4.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Long Cove Pond</td>
<td>2.3</td>
<td>1.4</td>
<td>4.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Edgartown Great Pond</td>
<td>2.4</td>
<td>2.5</td>
<td>2.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Fig. 6. A, B, C: isopach maps of the washovers from Big Homer’s Pond, Long Cove Pond, and Edgartown Great Pond, respectively. Contour lines are indicated by the white and black hashed lines and are at 1 m intervals for A and B and at half meter intervals for C. Contour labels are in meters. The gray scale is the same for all three figures and is indicated in C. Note the older washover to the east of the washover of interest in C. Reworked sediment from this washover was excluded from the isopach seen here, as discussed in the text. Note also that the southern edges of the deposits follow the vegetation line, as discussed in the text. Maps are overlaid on 2008 orthophotos from MassGIS.
produced by Hurricane Bob, which passed 50 km west of Martha’s Vineyard, allowing its strongest winds to directly impact the southerly facing South Beach (Cheung et al., 2007). Hurricane Bob made landfall at Newport, Rhode Island as a category 2 storm with winds of 160 km h\(^{-1}\) (Fig. 8; Mayfield, 1992). The surge created by Hurricane Bob at Long Cove and Big Homer’s Ponds was computed using the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model to give a maximum surge of 1.7 m (Jelesnianski et al., 1992; Cheung et al., 2007). Report a maximum surge of about 1.45 m).

The most recent washover at Edgartown Great Pond was deposited later than those at the other ponds. Aerial photos bracket the overwash event between March 1993 and 1998. Tide gauges at Newport, RI and Woods Hole, MA indicate that the highest water level during this interval occurred during a nor’easter on 10 January 1997 with a storm tide of 0.95 m MHW at Woods Hole (NOAA, 2011b).

5.1.4. Recurrence interval of storm water levels

To determine the return intervals of storms with the characteristics of Hurricane Bob and the January 1997 nor’easter, we used the monthly extreme water levels from the Woods Hole tide gauge over the past ~73 years (NOAA station ID 8447930; NOAA, 2011b). The 90th percentile of the data (0.596 m MHW) was determined, and all smaller values were removed. Then, a generalized Pareto distribution (GPD) was fit to those data, using 0.596 as the value for theta (Lin et al., 2010). The fit was evaluated for between 0.6 and 3.6 m MHW at 10 cm intervals. There were 884 months of data with 77 values exceeding 0.6 m, so the average return time for water levels in the 90th percentile is ~1 year. The cumulative probability from the GPD fit was used to calculate the return intervals for each 10 cm bin of water levels (Fig. 8). The return interval for the water level associated with Hurricane Bob is ~28 years and that associated with the January

Fig. 7. Aerial photos bracketing the deposition of the washovers at Big Homer’s and Long Cove Ponds (A and B) and at Edgartown Great Pond (C and D). Figure A is from 31 March 1991, B is from 20 November 1992, C is from 23 March 1993, and D is from 25 March 1998. Note in figures C and D that the washover of interest to this study is at the circled location. Images in A and B are from Cheung et al., 2007 and images in (C) and (D) are from the James W. Sewall Co.
Fig. 8. Return intervals for water levels based on extreme value theory (generalized Pareto fit) applied to Woods Hole, MA tide gauge data. Labels on the horizontal axis are the central values of the 10 cm bins. The return interval for a water level greater to or equal to that produced by the January 1997 nor'easter is about 6 years and that produced by Hurricane Bob is about 28 years.

1997 nor’easter is ~6 years (Lane, 2011). The monthly nature of the tide gauge data means that only the highest water level is recorded each month, so lower water levels are likely underestimates. As the higher water levels are of interest to the study, only those values greater than 0.6 m were used in the fit and therefore this error should not greatly affect the estimated return intervals.

5.1.5. Overwash fluxes

Given the calculated washover volumes, \(V (m^3) \), the length of barrier affected by the overwash, \(L (m) \), and the return interval of the surge that created the deposit, \(T_S \) (yr), onshore width-normalized sediment fluxes, \(Q_{OW} (m^3/m/yr) \), for each of the three ponds is estimated as:

\[
Q_{OW} = \frac{V}{L + T_S}. \tag{1}
\]

The length of the affected barrier is defined as either the alongshore length of the barrier fronting the pond containing the washover if there are no other washovers in the pond, or the distance from the edge of the pond to half-way between the washover of interest and the neighboring washover if there are multiple washovers in a pond. Flux values are given in Table 4 based on the estimates of the return times of the storm tides that caused the overwash events. The volume per unit length of barrier is not the same as that given in Table 1 because the length used in Table 1 is the alongshore dimension of the washover fan itself, whereas the length presented in Table 4 is that of the affected section of barrier. The alongshore length of the fan and the length of the affected barrier are similar at Big Homer’s and Long Cove Ponds. However, at Edgartown Great Pond, the barrier is much longer than the overwash fan. These flux calculations assume that the barrier overwashes if the water level is greater than or equal to the maximum water level that occurred during the storm that caused each overwash. If a storm does not produce a sufficiently high water level, then it is assumed that there is no onshore sediment flux. This approach allows complex processes, including wave run-up, and barrier geometries (including barrier height) to be taken into account implicitly because they are included in the high water level values.

Despite the similarity in the volumes of the washovers calculated at the three ponds, the ranges of flux estimates highlight the differences in affected barrier length and water elevation return interval. The flux is highest at Edgartown Great Pond due to the short return time of the water level needed to overtop the barrier. This suggests that there may be a typical, or maximum volume that is deposited as washover once a certain threshold of water elevation is met, at least for the specific range of offshore and barrier morphologies encountered in this study. Therefore, onshore sediment flux is maximized when an overwash is caused by the smallest necessary water level: these will have much smaller return intervals than the larger storms that produce a similar volume of washover. This contradicts the findings of Kochel and Dolan (1986), who found that larger storms contribute more to overwash flux than smaller frequent storms on southern Assateague Island, MD. This could indicate that there may be a threshold of water level needed to produce the “typical” washover volume and that very small overwash events will not reach this threshold, though future work is needed to expand the data set to verify this suggestion.

5.2. Part II: implications

5.2.1. Comparison with previous work

The overwash volumes calculated for the three South Beach washover fans range from 120 to 190 m³/m. These values are higher than most of those reported previously (Table 1) and typically coincide with values of washovers deposited by a confined flow (i.e., when the throat of the washover is constricted by high topography so the overwash is channeled through a small opening). The washovers of interest here all have a distinct throat, narrower than the rest of the deposit, so they could be considered confined flow. However, there is no hard structure confining the overwash; rather, they are bounded by erodible aeolian dunes. Alternatively, the high values from this study could indicate the importance of recognizing the three-dimensional nature of the deposit—not doing so appears to result in an underestimate of the normalized washover volumes. Additional work would be necessary to measure the three-dimensional volume of a washover at a location where pre- and post-overwash profiles have been conducted in order to determine if similar values are measured using each method.

5.2.2. Implications for long-term barrier evolution

The south shore of Martha’s Vineyard has been retreating at a rate of about 1.4 m/yr over the last ~200 years (Hapke et al., 2010). In a simple geometric model of barrier transgression, a barrier is able to maintain its form and migrate landward if it overwashes at a rate defined by its geometric constraints, \(Q_{OW} \) (Fig. 9). Using a priori information about the barrier geometry (pond depth, \(D_p \) barrier height, \(H_B \) and barrier toe depth, \(D_{BT} = -10 \) m; presented in Table 2) and shoreline retreat rate, \(R_S \), this equilibrium flux can be estimated from Eq. (2) and the amount of sediment eroded from the shoreface, \(Q_{SE} \), can be estimated from Eq. (3) assuming that sediment is eroded evenly from the entire shoreface.

\[
Q_{OW} = (D_p + H_B) \times R_S \tag{2}
\]

\[
Q_{SE} = (H_B + D_{BT}) \times R_S. \tag{3}
\]

Table 5 contains the fluxes necessary to maintain a stable barrier at each pond using the range of barrier heights at each pond as well as an estimated flux of sediment eroded from the shoreface. The overwash flux necessary for the barrier to maintain a stable shape averaged over the three ponds is ~10 m³/m/yr. This flux is about half of the material removed from the shoreface, ~19 m³/m/yr, using the shoreface depth to the barrier toe of ~10 m. The other material removed from the shoreface is likely removed due to gradients in alongshore transport, although it could potentially be permanently transported offshore during storms. This excess volume lost from

<table>
<thead>
<tr>
<th>Washover volume</th>
<th>Big Homer’s Pond</th>
<th>Long Cove Pond</th>
<th>Edgartown Great Pond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afected barrier length</td>
<td>220 m</td>
<td>340 m</td>
<td>470 m</td>
</tr>
<tr>
<td>Return time</td>
<td>28 yr</td>
<td>28 yr</td>
<td>6 yr</td>
</tr>
<tr>
<td>Vol./affected barrier length</td>
<td>96 m³/m</td>
<td>68 m³/m</td>
<td>51 m³/m</td>
</tr>
<tr>
<td>Onshore sediment flux</td>
<td>3.4 m³/m/yr</td>
<td>2.4 m³/m/yr</td>
<td>8.5 m³/m/yr</td>
</tr>
</tbody>
</table>
the shoreface could conceivably also be deposited as washover and actually cause the barrier to widen. The actual onshore sediment flux due to overwash estimated here is less than the value needed to maintain the barrier in its current shape (Fig. 9; see Tables 4 and 5 for values), although values are within an order of magnitude and the high end of the range in fluxes calculated at Edgartown Great Pond approaches this value. Aeolian processes could also contribute to the onshore flux of sediment; as such fluxes would be included in the deposits we measure, the presence of significant aeolian transport would only reduce the estimate of overwash flux.

The low sediment flux from overwash calculated here suggests that South Beach is not in steady state and is thinning. This interpretation is consistent with orthophotos which show that the barrier width near the three fans studied here has decreased by ~15 m between 1994 and 2008, equivalent to a decrease in barrier width of ~1.1 m/yr. This value suggests that only ~24% (or about 2.4 m3/m/yr) of the onshore sediment flux needed to maintain the retreating barrier is occurring, a number remarkably similar to the fluxes calculated at Edgartown Great Pond (8.5 m3/m/yr). Leatherman (1979a,b) suggests that overwash is infrequent until a barrier thins to a critical barrier width, after which point overwash increases and the barrier is able to migrate onshore. Accelerated sea-level rise and increased storm intensities and/or frequencies could prove beneficial to South Beach as these factors will likely increase the frequency of overwash. Relative sea-level rise would also decrease the magnitude of the surge needed for the barrier to overwash. These factors would allow for the barrier to have an increased onshore sediment flux thereby potentially allowing for it to migrate onshore as sea-level rises.

The washovers at Big Homer’s and Long Cove Ponds were deposited in 1991 during Hurricane Bob and contain 2.1 and 2.3 × 104 m3 of sediment, respectively. We compute the onshore sediment flux resulting from these events to be about 3.4–2.4 m3/m/yr. The washover at Edgartown Great Pond was deposited in 1997 during a January nor’easter, contains 2.4 × 104 m3 of sediment, and represents an onshore sediment flux of about 8.5 m3/m/yr. These values of flux are estimates as they rely on the recurrence intervals obtained from the relatively short tide gauge record and assume that only water levels are necessary to predict when overwash will occur.

The volumes of these washovers are similar to those deposited as confined flows in previous studies (Table 1). The washovers here

<table>
<thead>
<tr>
<th>Pond</th>
<th>Overwash flux necessary (Q_{OW^*}) (m3/m/yr)</th>
<th>Sediment removed from shoreface (Q_{SF}) (m3/m/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Homer’s Pond: maximum</td>
<td>9.8</td>
<td>20.0</td>
</tr>
<tr>
<td>Big Homer’s Pond: minimum</td>
<td>7.4</td>
<td>17.6</td>
</tr>
<tr>
<td>Long Cove Pond: maximum</td>
<td>12.0</td>
<td>21.1</td>
</tr>
<tr>
<td>Long Cove Pond: minimum</td>
<td>7.2</td>
<td>16.3</td>
</tr>
<tr>
<td>Edgartown Great Pond: maximum</td>
<td>14.9</td>
<td>21.9</td>
</tr>
<tr>
<td>Edgartown Great Pond: minimum</td>
<td>9.3</td>
<td>16.3</td>
</tr>
<tr>
<td>Average</td>
<td>10.1</td>
<td>18.9</td>
</tr>
</tbody>
</table>

6. Conclusions

The washovers at Big Homer’s and Long Cove Ponds were deposited in 1991 during Hurricane Bob and contain 2.1 and 2.3 × 104 m3 of sediment, respectively. We compute the onshore sediment flux resulting from these overwash events to be about 3.4–2.4 m3/m/yr. The washover at Edgartown Great Pond was deposited in 1997 during a January nor’easter, contains 2.4 × 104 m3 of sediment, and represents an onshore sediment flux of about 8.5 m3/m/yr. These values of flux are estimates as they rely on the recurrence intervals obtained from the relatively short tide gauge record and assume that only water levels are necessary to predict when overwash will occur.

The volumes of these washovers are similar to those deposited as confined flows in previous studies (Table 1). The washovers here

![Fig. 9](image_url)
were confined only by small, erodible dunes that were likely widened during overwash, so the high values may indicate that washover volumes are underestimated when the three-dimensional structure of the deposit is not taken into consideration.

The most important conclusion of this study regards barrier evolution. Using a simple geometric model of the barrier retreating at 1.4 m/yr, we estimate an average value of onshore sediment flux needed to maintain the barrier of ~10 m3/m²/yr. This value is higher than the fluxes calculated at Big Homer’s and Long Cove Ponds, with the flux at Edgartown Great Pond nearing this value. This result indicates that the barrier is currently out of equilibrium and is thinning under conditions of accelerated sea-level rise and shoreline retreat, a situation confirmed by orthophotos. Assuming continued barrier thinning, more frequent overwash is likely, leading to two possible general outcomes: increased overwash will provide adequate onshore sediment flux to maintain a smaller, thinner barrier, or overwash will remain inadequate, and the barrier will become too small and the barrier will drown. The small barriers of Martha’s Vineyard can benefit from sediment supplied by erosion of adjacent headlands. If these barriers were to fail, the inlets or embayments would likely be filled from alongshore sediment sources, a process that has been suggested in the past. Numerical models of barrier evolution are needed to provide insight into which of these options is most likely to occur given estimates of future sea-level rise and storm climate.

Acknowledgements

We would like to thank members of the WHOI Coastal Systems Group for their assistance in the field, lab, and in general, particularly Skye Moret, Stephanie Madsen, Michael Toomey, and Andrea Hawkes. We would also like to thank Christopher Hein for assistance in the field and with editing early drafts of this paper. We would also like to thank Laura Moore and an anonymous reviewer for their thoughtful comments on the manuscript.

D. Philip (Phil) Lane was a valuable member of the Coastal Systems Group as well as a good friend. We dedicate this paper to his memory. Access to the washovers on South Beach at Long Cove Pond and Big Homer’s Pond was graciously provided by the Trustees of Reservations at the Long Pond Reservation. Access to the washover at Edgartown Great Pond was provided by Nancy and Jerry Kohlberg through their caretaker Kendra Buresch. Many thanks to the Martha’s Vineyard Coastal Observatory, particularly Janet Fredericks, for allowing the use of the MVCO van on the island. William Wilcox of the Martha’s Vineyard Commission proved a valuable resource on the dynamics of the Edgartown Great Pond inlet as well as providing the aerial photos of that washover. This research was conducted through support from the National Science Foundation, grant Grant #E0818575.

References

Woodworth, J.B., Wigglesworth, E., 1934. Geography and geology of the region including Cape Cod, the Elizabeth Islands, Nantucket, Martha’s Vineyard, No Mans Land, and Block Island. Harvard College Museum of Comparative Zoology Memoirs 52.