Greenhouse gases and the oceans

Princeton Environmental Institute Laure Resplandy Princeton University

Consensus on global carbon budget builds upon 6 decades of research

GLOBAL CARBON PROJECT

Consensus on global carbon budget builds upon 6 decades of research

Consensus on global carbon budget builds upon 6 decades of research

12

GLOBAL CARBON

Yet, imbalance reflects gaps in our understanding

Natural and anthropogenic flows of carbon

Natural and anthropogenic flows of carbon

Natural and anthropogenic flows of carbon

Net ocean uptake = $F_{Cnat} + F_{Riv} + F_{Cant} + F_{Cnat(CC)} = F_{Cant} + F_{Cnat(CC)}$

Air-sea flux = F_{Cnat} + F_{Cant} + F_{Cnat}(CC)

Flux of anthropogenic carbon into the ocean = F_{Cant}

Advances and challenges

Global ocean carbon budget and sink

Consensus and uncertainties

Natural carbon cycle

Poorly sampled southern hemisphere and rivers

Natural variability and carbon-climate feedbacks

Southern Ocean vs. Tropics, seasonal amplification.

Consensus on <u>global</u> ocean carbon uptake at a rate expected from CO₂ rise

Global anthropogenic carbon flux from ocean interior accumulation

Matches expected uptake based on atmospheric CO₂ growth rate assuming steady-state circulation

Consensus on <u>global</u> ocean carbon uptake at a rate expected from CO₂ rise

cean uptake = F_{Cant} + $F_{Cnat(CC)}$ = 2.0 ± 0.3 PgC/y (Le Quéré et al. 2018) = 2.3 ± 0.4 PgC/y (Gruber et al, 2019)

3 challenges and source of uncertainties ...

1. Closing the ocean budget relies on assumptions for riverine flux & anthropogenic feedbacks

2. Connect open ocean and coastal ocean

Mapping of Landschutzer calibrated for coastal regions

Roobaert et al, in revision

3. Uncertainties in regional fluxes & temporal variability

tropics

3. Uncertainties in regional fluxes & temporal variability

Advances and challenges

Global ocean carbon budget and sink

Consensus and uncertainties

Natural carbon cycle

Poorly sampled southern hemisphere and riverine flux

Natural variability and carbon-climate feedbacks

Southern Ocean vs. Tropics, seasonal amplification.

Constraint on the ocean/river carbon fluxes from hemispheric transport asymmetry

Do we know the ocean southward carbon transport?

The ocean transports carbon southward & heat northward

The ocean transports carbon southward & heat northward

90S

MC

rksh

Tight carbon-temperature link arises from thermally driven fluxes (solubility) and biological pump (respired carbon)

Asymmetry in degree to which upwelled carbon is exported as sinking particles

Heat

Carbon

E

90N

Link between heat and carbon transport across sections

Data: Lundberg et al., 1996; Holfort et al., 1998; Alvarez et al., 2003; MacDonald et al. 2003, Ganachaud and Wunsch, 2003

Heat an indicator of interhemispheric carbon transport

Heat asymmetry explains **60%** of carbon transport Heat + Bio pump asymmetry explain **85%** of carbon transport

Too shallow overturning circulation in models...

Heat constraint on carbon transport

• Estimates agree within large uncertainties but systematic differences in north-south balance

Heat constraint on carbon transport

- Estimates agree within large uncertainties but ...ocean inversions incompatible with heat constraint
- Strong asymmetry suggests
 - strong river loop?
 - strong outgassing of natural CO₂ in South?

Resplandy et al., Nat Geo 2018

Additional constraints on the southern carbon flux support the existence of stronger natural outgassing

Additional constraints on the southern carbon flux support the existence of stronger natural outgassing

Bushinsky et al, in revision

Additional constraints on the southern carbon flux support the existence of stronger natural outgassing

Bushinsky et al, in revision

How well do we actually know the river carbon flux to the open ocean?

Ocean community has worked with systematically lower central values and uncertainties in river flux than the river/coastal community

Uncertainties in land/estuaries + coastal processes and lateral transfer to open ocean

What have we learned?

Stronger winter outgassing in the Southern Ocean Support for a stronger natural river loop

Challenge to include new float observations Systematic low bias in heat and carbon transport in ocean models Need to refine riverine input and transfer to open ocean

Natural variability and carbon-climate feedbacks

Southern Ocean vs. Tropics, seasonal amplification.

Reduced global ocean sink in the 1990s

Reduced global ocean sink in the 1990s

9 pCO2-based products (Roedenbeck et al 2015)
Decadal ocean interior inversion (OCIM, DeVries)
Steady-state ocean interior inversion (OCIM, DeVries)
9 Global ocean models (GCP)

Discrepancies in the region/processes controlling this variability

DeVries et al, 2019

Decadal variability in the Southern Ocean

Gruber et al, Ann Rev. Mar. Sci 2019 Li and Illyna, 2018 Le Quéré et al 2007 Landschützer et al., 2015

Increased upper-ocean overturning during the 1990s?

DeVries et al 2017 hypothesized that increased upper-ocean overturning in the 1990s could have increase natural CO₂ release (and anthropogenic CO₂ uptake)

Increased upper-ocean overturning during the 2000s?

In contrast, repeat hydrography in the Pacific suggest that the overturning increased during the 2000s yielding more anthropogenic carbon uptake

Unclear contribution of basin-scale natural variability

Magnitude and timing of ENSO-driven variability

Chatterjee et al Science 2017

Uncertainties on the magnitude of ENSO-driven natural variability in Equatorial Pacific and global influence

Rödenbeck et al 2015

Improve mechanistic understanding, a step towards reconciling different ocean estimates

Inform sampling / mapping technique / atmospheric inversions

Improve mechanistic understanding, a step towards reconciling different ocean estimates

Inform sampling / mapping technique / atmospheric inversions

With implications for land sink and global budget

Long-term increase in pCO₂ seasonal amplitude yields reduced sink/enhanced source

Seasonal asymmetry (seasonal max increases more than seasonal min decreases)

1. Long-term increase in ocean pCO₂ (seasonality acts on a larger pCO₂)

2. Stronger Revelle factor due to acidification at high latitude (pCO₂ becomes more sensitive)

JCB Airsea

Long-term increase in pCO₂ seasonal amplitude yields reduced sink/enhanced source

Seasonal asymmetry (seasonal max increases more than seasonal min decreases)

1. Long-term increase in ocean pCO₂ (seasonality acts on a larger pCO₂)

2. Stronger Revelle factor due to acidification at high latitude (pCO₂ becomes more sensitive)

Seasonal amplification expected by 2100

Fassbender et al 2017 Landschutzer et al 2019

Advances

Consensus on global anthropogenic carbon budget

Tighter constraints on natural ocean/river carbon flux & seasonal cycle Improved characterization of natural variability

Challenges - Efficient impact at policy level requires to reconcile estimates at regional and interannual time-scales.

Need for better quantification and mechanistic understanding of

- land-ocean fluxes rivers + lateral fluxes between coastal and open ocean
- basin-scale variability temporal and small-scale
- carbon-climate feedbacks physical/biological response to perturbation (climate, nutrients etc.),

Observations still limited in polar oceans (ice, winter), tropical Pacific/ Indian (natural variability), coastal upwelling regions.

Include new data types (floats, satellite ocean glint etc.) into existing mapping method

Challenges - Efficient impact at policy level requires to reconcile estimates at regional and interannual time-scales.

Need for better quantification and mechanistic understanding of

- land-ocean fluxes rivers + lateral fluxes between coastal and open ocean
- basin-scale variability temporal and small-scale
- carbon-climate feedbacks physical/biological response to perturbation (climate, nutrients etc.),

Observations still limited in polar oceans (ice, winter), tropical Pacific/ Indian (natural variability), coastal upwelling regions.

Include new data types (floats, satellite ocean glint etc.) into existing mapping method

Other gases N₂O

2007-2016: largest uncertainty is in ocean flux Top-down: 3.4-7.1 Tg N/y Bottom-up: 2.6-4.4 Tg N/y (Tian et al., in prep)

