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ABSTRACT

Anomalous conditions in the tropical oceans, such as those related to El Niño–SouthernOscillation and the

Indian Ocean dipole, have been previously blamed for extended droughts and wet periods in Australia. Yet

the extent to which Australian wet and dry spells can be driven by internal atmospheric variability remains

unclear. Natural variability experiments are examined to determine whether prolonged extreme wet and dry

periods can arise from internal atmospheric and land variability alone. Results reveal that this is indeed the

case; however, these dry and wet events are found to be less severe than in simulations incorporating coupled

oceanic variability. Overall, ocean feedback processes increase the magnitude of Australian rainfall vari-

ability by about 30%and give rise tomore spatially coherent rainfall impacts. OvermainlandAustralia, ocean

interactions lead to more frequent extreme events, particularly during the rainy season. Over Tasmania, in

contrast, ocean–atmosphere coupling increases mean rainfall throughout the year. While ocean variability

makes Australian rainfall anomalies more severe, droughts and wet spells of duration longer than three years

are equally likely to occur in both atmospheric- and ocean-driven simulations. Moreover, they are essentially

indistinguishable fromwhat one expects from aGaussian white noise distribution. Internal atmosphere–land-

driven megadroughts and megapluvials that last as long as ocean-driven events are also identified in the

simulations. This suggests that oceanic variabilitymay be less important than previously assumed for the long-

term persistence of Australian rainfall anomalies. This poses a challenge to accurate prediction of long-term

dry and wet spells for Australia.

1. Introduction

Australia’s climate is characterized by high temporal

and spatial variability (Nicholls et al. 1997). Extreme

events range in spatial extent and time scale, from

multiyear, continental-scale droughts to localized flash

floods. Severe droughts have widespread social and

economic consequences for agriculture, ecosystems,

and human welfare. For instance, Australia suffered

dramatic crop and livestock losses during the Federa-

tion Drought from 1895 to 1902, the World War II

Drought from 1937 to 1945, and the more recent Mil-

lennium Drought (or Big Dry) from 1995 to 2009

(Verdon-Kidd and Kiem 2009). Extreme wet events

can also have a devastating impact for the nation—for

example, the floods that affected many regions across

the continent during the ‘‘Big Wet’’ in 1974 and also

during 2010–12. Figure 1 summarizes the driest and

wettest eras in Australia using the 1900–2014 Austra-

lian Water Availability Project (AWAP) rainfall

dataset (Raupach et al. 2009).
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After the rainfall deficits of the Federation Drought,

many parts of central and South Australia experienced

intense dry conditions during 1926–28 (Fig. 1, top).

Australia again suffered widespread drought over the

western half of the continent in the 1930s and over large

parts of eastern Australia in the first half of the 1940s

(Fig. 1, top) during the World War II Drought, also

known as the Forties Drought (Verdon-Kidd and Kiem

2009). Dry conditions affected the Northern Territory

and Australian interior in the early 1960s (Fig. 1, top).

In 1982, New South Wales and Victoria were affected

by the worst short-term drought since the beginning of

the century driven by the strong 1982 El Niño event. In

the early 1990s, parts of northern Australia experienced

dry conditions that were intensified in 1994/95, espe-

cially over Queensland (Fig. 1, top), by a series of weak

El Niño events. This dry spell marked the beginning of

the so-calledMillenniumDrought that persisted into the

early 2000s.

The Millennium Drought was widespread across

much of the continent during 2002–06 and persisted

much longer across localized regions over southeast

Australia. The long duration of this dry spell has been

associated with sea surface temperature (SST) condi-

tions in the Indian and Pacific Oceans. Ummenhofer

et al. (2009) show that the absence of negative Indian

Ocean dipole (IOD) events during the Big Dry from

1995 to 2006, as well as during the FederationDrought in

1895–1903, reduced tropical moisture advection to

southeastern Australia. In addition, during the Big Dry

period, one of the worst short-term droughts was re-

corded in 2002 (Nicholls 2004), particularly intense in

the southeast across Victoria (Fig. 1, top). Low rainfall

rates were associated with a weak El Niño event in 2002

and exacerbated by high evaporation rates due to very

high daytime temperatures (Karoly et al. 2003; Nicholls

2004). The drought continued for the following few

years over eastern Australia, persisting until 2009 in

some regions of Victoria (Gergis et al. 2012).

Long wet spells have also affected Australia’s climate

in significant and costly ways. An interesting feature of

Fig. 1 (bottom) is that wet eras are coherent over more

extensive regions than dry eras. The reason for this

spatial asymmetry is unclear, but it is likely related to the

asymmetric response of Australian rainfall to El Niño–
Southern Oscillation (ENSO) events. In particular,

Power et al. (2006) have shown that strong La Niña
events are tightly linked to a large-scale Australian re-

sponse, whereas the magnitude of El Niño events is a

poorer predictor for the severity of Australia’s dryness.

This nonlinear response of rainfall intensity to ENSO

may also apply to spatial scales. Here we will show that

the spatial asymmetry between wet and dry spells is

reproduced in a fully coupled climate model simulation.

At the beginning of the twentieth century, after the

Federation Drought, parts of Western Australia expe-

rienced extreme wet conditions during the period

known as ‘‘The Recovery’’ of 1915–17 (Fig. 1, bottom).

The 1950–56 period was the wettest era over the east

(Fig. 1b), when parts of NSW experienced recurrent

floods over theMaitland region (BoM 2015a). The 1970s

marked the wettest long-term period over large areas of

Australia (Fig. 1, bottom). This unprecedented wet pe-

riod, known as the Big Wet in 1974, was combined with

flash floods in the east and an active cyclone season in

1974/75 (BoM 2015b). The late 1990s were exceptionally

wet over Western Australia and the Northern Territory

(Fig. 1, bottom), particularly because of very heavy rain

events in the tropics during the recurrent La Niña

FIG. 1. Schematic of (top) era of driest decade and (bottom) era

of wettest decade. Annual mean rainfall anomalies are constructed

frommonthly anomalies based on the AWAP rainfall dataset from

1900 to 2014. To avoid influences of data errors or localized rainfall

extreme events, a spatial linear filter was applied to obtain a con-

sistent smooth large-scale pattern over Australia. The wettest or

driest periods indicated in the schematic were then selected by

choosing the maximum and minimum rainfall anomaly of the 11-yr

running mean time series for each grid point. Areas are colored to

indicate grid points within the same decade, and the years repre-

sent the center of the anomalous events. Some of the extensive

droughts and extreme wet events are indicated on the right side of

the color bar. The largest Australian political divisions are also

indicated: Western Australia (WA), Northern Territory (NT),

South Australia (SA), Queensland (QLD), New South Wales

(NSW), Victoria (VIC), and Tasmania (TAS).
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conditions from March 1998 to March 2001 (Okumura

and Deser 2010).

More recently, Australia (on average) experienced

the wettest 24-month period on record from April 2010

to March 2012. The reasons for this continental-scale

wet spell are still under debate; however, it is likely a

combination of a strong La Niña event and changes as-

sociated with a negative phase of the southern annular

mode (SAM; Hendon et al. 2014; Lim et al. 2016) in

addition to a long-term warming signal in the oceans

(Ummenhofer et al. 2015). This recent anomalous wet

period is not apparent in Fig. 1 (bottom) as that analysis

highlights only decadal anomalies.

Many of the iconic large-scale droughts and pluvials in

Australia are thought to be driven by anomalous equa-

torial Indo-Pacific SST—for example, the short 1982/83

and long 1991–95 El Niño–related droughts and the Big

Wet associated with the persistent 1973–76 La Niña.
Prolonged drought episodes inAustralia’s southeast and

Murray–Darling River basin, such as the World War II

and Millennium Droughts, were also linked to unusual

Indian Ocean conditions (Ummenhofer et al. 2009,

2011). Variations in ocean temperatures on multi-

decadal time scales also cause drought conditions in

Australia. For instance, Verdon-Kidd and Kiem (2009)

associate the Federation Drought with sustained El

Niño activity and a positive phase of the interdecadal

Pacific oscillation (IPO). The IPO modulates the re-

lationship between ENSO and Australian rainfall on

interdecadal time scales, such that teleconnections are

more robust during IPO negative phases (Power et al.

1999). Multidecadal drought periods, sometimes re-

ferred to as megadroughts, have been reported in North

America via multicentury tree-ring reconstructions

(Cook et al. 2007) and have been associated with a shift

toward a La Niña–like mean state in the tropical Pacific

(Coats et al. 2015). In Australia, mega-rainfall episodes

over the past few centuries have received much less at-

tention in the literature, although such events have been

found in paleoreconstructions dating back 100 kyr

(1 kyr 5 1000 yr; e.g., Cohen et al. 2011, 2012a). In the

past millennium, Cohen et al. (2012b) show evidence

of amegapluvial episode in southernAustralia driven by

an anomalous sea level trough extending from the

SouthernOcean into central Australia, resulting in Lake

Callabonna filling to more than 10 times the volume of

its largest historical filling in 1974. Megadroughts in

Australia’s past millennium have been recently identi-

fied byVance et al. (2015); using amillennial-length IPO

reconstruction, they suggest a close link between its

positive phase and the occurrence of megadroughts in

southeastern Australia (including one lasting 39 yr).

Multiproxy reconstruction data by Gergis et al. (2012)

suggest a robust relationship between variations in

southeast Australia rainfall, ENSO, and IPO. In this

study, we will show that Australian megadroughts and

megapluvials can be simulated in multicentury simula-

tions from a coupled climate model.

Variations of ocean temperatures are not the only

factor affecting floods and droughts in Australia. For

example, Kiem and Verdon-Kidd (2010) suggest that

the SAM was a major driver of the Big Dry in southeast

Australia. Cai et al. (2011) attributed the lowest winter

rainfall in southwestern Western Australia in 2010 to a

positive phase of the SAM. The SAM is an intrinsic

mode of variability in the atmosphere characterized by

variations in the position (latitude) and strength of

the Southern Hemisphere midlatitude westerlies. The

SAM has been shown to modulate precipitation over

southwest Western Australia, Victoria, and Tasma-

nia (Hendon et al. 2007; Hill et al. 2009). Although the

SAM can impact southern high-latitude ocean and sea

ice variability (Sen Gupta and England 2006), it is

mainly associated with internal atmospheric variability

and is largely unrelated to any localized feedback in

oceanic conditions (Sen Gupta and England 2007). On

multidecadal time scales greenhouse gases and ozone

have been implicated in changing the SAM (Arblaster

and Meehl 2006).

In cases where floods and droughts are caused by re-

mote SST variability (e.g., associated with ENSO and

the IOD), ocean memory provides potential forecast

skill on seasonal time scales (e.g., Shukla et al. 2000;

Meinke et al. 2005) and beyond (Meehl et al. 2014;

Jourdain et al. 2016). In contrast, rainfall prediction due

to atmospheric variability ranges from 1 month in case

of low-frequency planetary waves (Shukla 1981) up to

4 months in the case of atmospheric oscillations such as

the SAM (Seviour et al. 2014). There is relatively little

forecasting skill beyond seasonal time scales, and even

when this happens it is indirectly linked to oceanic

conditions; for example, the seasonal predictability of

SAM linked to ENSO reported by Lim et al. (2013).

Moreover, Gallant et al. (2013) suggest that the re-

lationships between ENSO and SAM and precipitation

over Australia are nonstationary on multidecadal time

scales, possibly forced by internal climate variability.

Thus, predicting drought or flood characteristics at ex-

tended lead times is more challenging where ocean

memory is not involved.

Sea surface temperature has been shown to provide

high potential predictive skills for air temperature,

precipitation, and sea level pressure over the tropics,

although this decreases over certain significant land

areas, such as Australia, parts of Africa, and South

America (Manabe and Stouffer 1996; Rowell 1998;
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Taschetto and Wainer 2008; Feng et al. 2011). In con-

trast, internal atmospheric variability dominates varia-

tions in the extratropical regions (Kushnir et al. 2002),

making predictions more difficult. For instance, Power

et al. (1995) demonstrate that stochastic variability be-

comes more important than variability associated with

SST over the extratropics and that it can result in sub-

sequent variability on decadal time scales unrelated to

oceanic processes.

Previous studies using numerical models have sug-

gested that stochastic atmospheric variability can play a

significant role in the occurrence of megadroughts in

certain regions of the globe—for example, North

America (Coats et al. 2013a; Stevenson et al. 2015), In-

dia (Hunt 2012), andAustralia (Hunt 2009; Gallant et al.

2013). If stochastic processes are the primary factor

driving megadroughts and megapluvials, this compro-

mises the predictability of extended periods of dry and

wet episodes.

To better understand prediction limitations, it is im-

portant to understand the extent to which long-term dry

and wet periods in Australia can be triggered and

maintained without ocean memory. The goal of this

study is to investigate the role of the ocean in modu-

lating annual to multidecadal variability in rainfall and

whether extended dry and wet periods are possible as a

result of internal atmospheric and land surface vari-

ability alone. We use experiments within a coupled cli-

mate model to assess how prolonged dry and wet spells

differ when ocean variability is suppressed. The model

and numerical simulations are described in the next

section. The simulated rainfall response to oceanic and

atmospheric variability is examined in terms of mean

and extremes in section 3. The spatial impact of droughts

and wet spells is examined in section 4. Section 5 ex-

plores rainfall distribution in three regions in Australia

and its variability via power spectrum and autocorrela-

tion analyses. The severity, duration, and return period

of extended dry and wet spells, as well as their season-

ality, are evaluated in section 6. Section 7 presents a

discussion of decadal variability and identifies internal

atmosphere–land-driven and ocean-driven mega-

droughts and megapluvials in the model and associated

mechanisms. Finally, discussion and conclusions are

presented in the last two sections.

2. Methodology

To assess the role of internal atmospheric vari-

ability in driving long-term dry and wet spells over

Australia, we use the NCAR Community Earth Sys-

tem Model, version 1.0.5 (CESM1.0.5; Gent et al.

2011), configured both 1) in fully coupled mode and

2) in atmospheric experiments. The configuration of

the CESM used in this study consists of the following

model components: atmosphere [Community Atmo-

sphere Model, version 4 (CAM4)], sea ice [Commu-

nity Ice Code, version 4 (CICE4)], land [Community

Land Model, version 4 (CLM4)], and ocean [Parallel

Ocean Program, version 2 (POP2)] as well as a cou-

pling infrastructure (CPL7) that exchanges state in-

formation between them.

The two simulations are performed at a resolution

of 1.98 latitude by 2.58 longitude for both atmosphere

and ocean—a fully coupled simulation performed

with the general circulation model (GCM) referred to

as CPLD and an atmospheric GCM run, referred to

as AGCM.

The CPLD simulation consists of a 700-yr in-

tegration. In this simulation, all components of the

climate system fully interact with each other, and thus

this run contains all forms of coupled variability, in-

cluding coupled variability reliant on oceanic process,

such as ENSO.

The AGCM simulation is integrated for 1000 yr and

is forced with a repeating 12-month SST and sea ice

climatology constructed from output of the CPLD

simulation. As such, themonthly SST climatology is the

same in both simulations, but the AGCM simulation

has no interannual or longer time-scale variability in

SST. In both experiments the land component is active

and responds to the atmospheric fluxes.

In neither experiment did we impose any external

forcings that could result in further decadal and/or mul-

tidecadal variability, such as solar forcing, volcanoes,

aerosols, ozone depletion, or greenhouse gas increases.

Therefore, any unforced component of decadal rainfall

extremes arises as a result of internal atmosphere–land

variability (AGCM) and/or coupled ocean–atmosphere–

land–ice processes (CPLD).

By examining the difference between these two

simulations we can determine whether internal vari-

ability in the atmosphere–land system is able to gen-

erate extended periods of dry or wet conditions as

intense and/or persistent as those produced when

coupling the atmosphere with the ocean. These ex-

periments are not, of course, mutually exclusive in that

regard; that is, internal atmospheric and land variabil-

ity will be present in the CPLD experiments, as well as

in the AGCM.

The NCAR CESM skillfully simulates the large-scale

Australia monsoon pattern and exhibits clear improve-

ments in the representation of intraseasonal-to-

interannual variability from previous versions of this

model (Meehl et al. 2012; Taschetto et al. 2011). The

model captures the Australian monsoon strength and
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seasonality with high fidelity compared to other climate

models taking part in phases 3 and 5 of the Coupled

Model Intercomparison Project (CMIP3 and CMIP5;

Jourdain et al. 2013). Jourdain et al. (2013) further

demonstrated that the NCAR CESM is among the 12

best CMIP3/CMIP5 models in representing the ob-

served Australian monsoon–ENSO teleconnection.

Previous studies have shown that the intensity of Aus-

tralian rainfall response to El Niño and La Niña events

are satisfactorily reproduced in a previous version of the

NCARmodel (Taschetto et al. 2010; Ummenhofer et al.

2015), although the teleconnection pattern is slightly

shifted to the west (Cai et al. 2009), a common bias in

CMIP5 models due to the cold tongue bias in the

equatorial Pacific and a warm pool located too far west

in coupled climate models (e.g., Taschetto et al. 2014).

3. Australian precipitation statistics simulated by
AGCM and CPLD simulations

A brief evaluation of the model is first undertaken in

terms of Australian rainfall characteristics. Figure 2

shows the annual average precipitation and seasonal

averages for November–March (NDJFM) and for

May–September (MJJAS) for observations and simu-

lations. The model is able to reproduce the overall

pattern and seasonality of precipitation, with in-

creasing rainfall from the subtropics to the tropics

where the monsoon occurs in DJF. However, the sim-

ulations overestimate the observed precipitation in

most regions. Precipitation biases are proportionally

largest in the driest regions, such as in the Australian

interior. For instance, the annual observed pre-

cipitation in the Australian interior (Fig. 2a, red line) is

0.7mmday21, while the CPLD and AGCM simulate

2.1mmday21 for the same area (i.e., approximately

3 times more rain than observed). However, it is in the

tropics north of 258S, particularly during austral sum-

mer when the monsoon occurs, that precipitation bia-

ses are largest in absolute magnitude (Figs. 2b,e,h).

Elsewhere the CPLD and AGCM simulations un-

derestimate observed rainfall over western Tasmania

and along the far east coast of Australia, likely related

to the inability of the model to resolve steep topogra-

phy and the resulting effect on rainfall.

Despite biases in magnitude, the model broadly

captures the overall spatial patterns and seasonal

changes of observed precipitation over Australia. Note

that the differences between observations and simula-

tions are not overly problematic here, as the main

purpose of this study is to compare the wet and dry

aspects of CPLD and AGCM relative to each other.

For the rest of the study, we will primarily focus on

differences between the CPLD and AGCM simula-

tions. Observations will only be evaluated when

needed to put the simulated results into context with

regard to historical droughts and wet spells.

Although the AGCM and CPLD simulations have

the same mean state and climatology in SST by con-

struction, they do exhibit significant differences in

rainfall seasonality. In particular the absence of in-

terannual and longer time-scale ocean variability

reduces the annual mean precipitation along the

northern and southern coasts of Australia but in-

creases precipitation over the interior of Queens-

land, Northern Territory, and Western Australia

(Fig. 2j) from November to March (Fig. 2k). The

large rainfall difference in Tasmania throughout the

year between AGCM and CPLD suggests that vari-

ations in SST are important for modulating rainfall.

This may be linked to an enhancement of baro-

clinicity at the storm-track region that ultimately

affects weather phenomena for southern Australia

(e.g., cold fronts, cutoff lows, and blocking highs;

Risbey et al. 2009).

The interannual variability of rainfall is assessed

here in terms of the standard deviation of the annual

mean precipitation (Figs. 3a–c). The regions where

the simulated interannual standard deviation of rain-

fall is largest coincide with areas of larger mean

rainfall (i.e., the tropics; Fig. 3a). The AGCM simu-

lates less variability than CPLD almost everywhere

(Fig. 3c), with an average reduction of 32%. This is

unsurprising given the absence of variability forced by

interannual oceanic changes.

The CPLD rainfall distribution is positively skewed

over most of Australia (Fig. 3d). This is due in part to the

nature of the precipitation distribution, which is by ne-

cessity bound below by zero but can take large positive

values. TheAGCMexperiment has a less skewed rainfall

distribution (i.e., fewer extreme heavy rainfall years) for

much of the continent with the most obvious exception

over the north of Australia (Fig. 3f).

The extremes of precipitation in CPLD are estimated

by the 5th and 95th percentiles of annual precipitation

(Figs. 3g and 3j, respectively). TheAGCM simulates less

intense extremes and a narrower precipitation distri-

bution than CPLD across most of Australia, as revealed

by the differences in the tails of the distribution in

Figs. 3i,l.

In summary, the absence of ocean variability in the

AGCM is reflected in the precipitation variability across

Australia. Specifically, the CPLD experiment shows

larger standard deviations and skewness and more-

extreme values compared to the AGCM simulation

(Figs. 3c,f,i,l).
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FIG. 2. Annual, NDJFM, and MJJAS averaged precipitation (mmday21). (a)–(c) Observations (OBS) from

AWAP. (d)–(f) Fully coupled simulation (CPLD). (g)–(i) Atmospheric forced simulation (AGCM). ( j)–(l)

Differences between the AGCM and CPLD. The upper color bar refers to (a)–(i) and uses a logarithmic scale to

enhance signal visibility in areas affected by the monsoon; ( j)–(l) use the lower color bar. Averaged rainfall in the

Australian interior delimited by the red line in (a) is quantified in the text. Gray hatching covers areas where the

simulated climatologies of CPLD and AGCM differ significantly from each other at the 95% level.
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The following sections investigate the spatial extent,

duration, and intensity of simulated dry and wet periods

for Australia.

4. Spatial scale of Australian dry and wet spells

We first examine whether the areal extent affected

by dry and wet spells varies between CPLD and

AGCM. It could be expected that droughts and wet

conditions in the CPLD simulation would extend over

larger areas given that coupled phenomena, such as

ENSO and the IPO, are associated with large-scale

reorganization of the atmospheric circulation. In

contrast, the stochastic nature of internal atmospheric

variability may result in more localized impacts. To

address the spatial scale of rainfall extremes simulated

by CPLD andAGCM, we first examine the area across

Australia in which the annual rainfall exceeds the 5th

and 95th percentiles (Figs. 4a–f). Note that we exam-

ine the sum of Australian land areas that experience

extreme rainfall; these areas are not necessarily

contiguous.

In line with our expectation, extreme wet and dry

conditions simulated over Australia cover a larger area

of the continent in CPLD (Figs. 4b,e) compared to the

AGCM (Figs. 4c,f) simulation in most years. For in-

stance, extreme wet (dry) conditions extending over an

area exceeding one-quarter of Australia occurs 2.7 (1.5)

times more frequently in CPLD than in the AGCM

simulation. This means that large-scale dry/wet events

are more likely to occur when coupled ocean–

atmosphere variability is present.

FIG. 3. (a)–(c) Standard deviation of annual precipitation over Australia (mmday21), (d)–(f) skewness of annual precipitation, cal-

culated as the third central moment of distribution, and (g)–(i) 5th and (j)–(l) 95th percentile of annual distribution of precipitation

(mmday21) for (left) CPLD, (center) AGCM, and (right) differences between the AGCM and CPLD. Black contours in the right panels

represent zero.
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In general, extreme wet conditions in observations

affect a larger area of the continent than extreme dry

conditions on interannual time scales (Figs. 4a,d). This

asymmetry is also simulated in CPLD (Figs. 4b,e). For

instance, 1% of CPLD wet events extend over 50% of

the continent while only 0.5%of CPLDdry events affect

more than half of Australia. Although the AGCM sim-

ulation does not show any events where extreme rainfall

occurs over half of Australia, there does appear to be a

significant asymmetry between the wet and dry cases

(at the 90% level based on a Monte Carlo test). How-

ever, the asymmetry is in the opposite sense to that

found for the CPLD experiment, with 1.9% of AGCM

wet events against 3.4% of dry events affecting at least a

quarter of the continental area (Figs. 4c,f).

Figure 4g shows the proportion of years when a cer-

tain percentage of the Australian land area (x axis) had

high (solid lines;.75th percentile) or low (dashed lines;

,25th percentile) rainfall. If rainfall at each grid cell

were uncorrelated to neighboring grid cells, this would

lead to a normal distribution of rainfall area centered

around 25%. However, in the case of the model exper-

iments, the probability of extended land areas being

subject to extreme rainfall decreases for larger areas. In

FIG. 4. Percentage of area per year inAustralia where annual precipitation is (a)–(c) above the 95th percentile for a wet year and (d)–(f) below

the 5th percentile for a dry year. As a reference, dashed lines in (a)–(f) represent 25% and 50% of the area. Year 100 for observations in

(a),(d) represents calendar year 2000. (g) Distribution of percentage of Australian land area with annual precipitation exceeding the

75th percentile for wet years (solid lines) and with annual precipitation below the 25th percentile for dry years (dashed lines). The

number of events has been normalized to 1000 years to account for the different simulation lengths. Shown are OBS (green), CPLD

(blue), AGCM (brown), and uniformly distributed random values (gray). For easier visualization, the count for the random distribution

is on the right y axis. Note that the areas exceeding the rainfall threshold are not necessarily contiguous.
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particular for the CPLD experiment (Fig. 4g, blue lines),

dry and wet years occur more often locally, with ap-

proximately 370 out of 1000 years affecting up to 10% of

the land area. Conversely, the AGCM simulation

(Fig. 4g, brown lines) shows a distribution with the

maximum number of dry and wet events affecting be-

tween 10% and 20% of the area of Australia. By re-

placing the rainfall data with a randomly generated time

series, the distribution peaks at 25% (Fig. 4g, gray lines).

However, the random distribution is less concentrated

around 25% if we artificially introduce a spatial auto-

correlation. At a large spatial autocorrelation, the ran-

dom distribution decreases monotonically (not shown)

as found for the CPLD simulation in Fig. 4g. Thus, the

fact that the model experiments and observations do not

show peaks at 25%of the area suggests the existence of a

physical mechanism (rather than a white noise process)

producing coherent wet and dry patterns in both the

CPLD and AGCM simulations.

The number of years when below- and above-average

rainfall exceeds the 25th percentile decreases with the

increase in the spatial scale (Fig. 4g). Perhaps surpris-

ingly, the AGCM, not the CPLD, simulates a larger

number of rainfall events affecting between 10% and

50% of the continent similar to observations. The dif-

ference in the number of dry and wet events affecting

up to 40% of land between CPDL and AGCM is sta-

tistically different at the 95% level based on a Monte

Carlo test. On the other hand, the CPLD run simulates

more continental-scale impacts than the AGCM. For

instance, wet (dry) events impacting over 70% of the

continent occur approximately 17 (2) times more often

in the CPLD than the AGCM simulation, the wet case

being statistically significant at the 95% level using a

Monte Carlo test (Fig. 4g). This suggests that coupled

ocean–atmosphere variability plays an important role

in the spatial scale of extreme rainfall events over

Australia.

5. Characteristics of regional rainfall in CPLD and
AGCM

As most wet and dry events simulated in Australia

cover less than one-quarter of the land area, we follow

the previous analysis with a regional evaluation of

rainfall anomalies. Australia was initially subdivided

into eight different regions, as shown in Fig. 5a (colored

boxes). However, the results indicated that in the model

the behavior of these regions could be largely summa-

rized based on three main regions: 1) Western Australia

(WA; 138–358S, 1138–1298E); 2) eastern Australia (EA;

118–398S, 1388–1548E), spanning Queensland, New South

Wales, and Victoria; and 3) Tasmania (TAS; 408–448S,

1438–1508E). These regions roughly delineate the zones

that are influenced by different climate modes in the

surrounding oceans. Specifically, WA is primarily influ-

enced by local processes in the Indian Ocean, EA is

strongly impacted by the tropical Pacific and ENSO, and

TAS is directly affected by the westerly winds and the

SAM in the Southern Ocean region.

Figures 5b,d,f show the simulated climatologies of

precipitation for the three selected regions. The clima-

tologies are similar between the experiments, except for

larger rainfall in CPLD than AGCM during the austral

summer for WA (Fig. 5b) and EA (Fig. 5d) and

throughout the year for TAS (Fig. 5f). The frequency

distributions of annually averaged rainfall for all of the

three regions (Figs. 5e,f) simulated in the AGCM is

statistically different from CPLD at the 95% level

using a Kolmogorov–Smirnov test. The annual rainfall

variability estimated by the interquartile range is

0.2mmday21 larger in CPLD than AGCM for bothWA

and EA regions. This difference is dominated by

changes in the tails of the distributions (Table 1). In

contrast, the shape of the rainfall distribution for TAS

remains similar in CPLD to AGCM; however, the me-

dian precipitation decreases by 0.4mmday21 in the ab-

sence of ocean variability. It is interesting that the role of

the ocean for Australian rainfall seems to vary meridi-

onally; that is, the ocean increases rainfall variability by

adding extreme values to the distribution in the tropics/

subtropics of Australia (i.e., WA and EA; Figs. 5c,e) but

by shifting rainfall mean in the midlatitudes (i.e., TAS;

Fig. 5g).

Figure 6 shows the time series of annual mean pre-

cipitation averaged for each region and the corre-

sponding decadal time series. It is clear from the time

series that rainfall anomalies simulated in CPLD are

larger than in AGCM. An analysis of the standard de-

viation ratio between the CPLD and AGCM simula-

tions reveals that the rainfall interannual variability due

to oceanic processes is approximately 62%, 66%, and

24% larger than atmospheric variability in theWA, EA,

and TAS regions, respectively. As previously discussed,

the rainfall standard deviation difference between

CPLD and AGCM is primarily due to more frequent

extreme events for WA and EA (Fig. 5).

The power spectra and autocorrelation analyses

shown in Fig. 7 reveal that AGCM rainfall variability is

essentially a white noise process on interannual time

scales. While autocorrelation decays exponentially in

both simulations, CPLD clearly shows the enhanced

memory of the coupled system for WA and EA regions.

For instance, the autocorrelation coefficient crosses the

zero line in 14 months for WA and EA in CPLD, similar

to observations (i.e., 15 months for WA and 14 months
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FIG. 5. (a) Shaded boxes over Australia show the areas initially used to define the selected

three regions for this study (depicted by red boxes): WA, EA, and TAS. (b),(d),(f) Seasonal

cycle of mean precipitation (mmday21) over the selected Australian regions for CPLD (blue

line) and AGCM (brown line). Months highlighted in boldface on x axis indicate that CPLD

rainfall is statistically different from the AGCM at the 95% significance level based on a Stu-

dent’s t test. (c),(e),(g) Probability density distributions of annual mean precipitation over the

selected regions: CPLD (blue) and AGCM (brown). Interquartile ranges are specified over

arrows and medians in the x axis (mmday21).
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for EA), while it takes 7 and 9 months for WA and EA,

respectively, in AGCM (Figs. 7j,k). Curiously TAS does

not show signs of additional ‘‘memory’’; that is, auto-

correlation functions decay to zero in 8, 11, and

10 months in observations, CPLD, and AGCM, re-

spectively (Fig. 7l).

While CPLD simulates larger variance concentrated

within the interannual time scale of the power spectrum

(Figs. 7b,e,h), the CPLD time series show larger vari-

ability concentrated with a period around 4.3 yr, par-

ticularly prominent over the WA and EA regions. This

periodicity is similar to the observed 4.3 yr in WA

(Fig. 7a), and it is likely associated with SST variations

during ENSO and IOD events. No spectral peaks are

simulated on decadal time scales in CPLD. This is con-

sistent with previous studies that show that coupled

climate models tend to underestimate the observed de-

cadal variability particularly in the tropics (e.g., England

et al. 2014).

While the AGCM power spectrum is largely flat there

is some enhanced variability between 3.5 and 4 yr inWA

that must be unrelated to ocean coupling (Fig. 7c).

There is also a significant peak at approximately 2 yr in

WA and to a lesser extent EA, possibly associated with

the so-called tropospheric biennial oscillation (TBO;

Meehl and Arblaster 2002). The TBO (which is thought

to modulate low-latitude rainfall over Australia) has a

tendency for a relatively strong Australian monsoon to

be followed by a relatively weak one, and vice versa. In

principle, the TBO involves coupled land–atmosphere–

ocean processes over the Indo-Pacific region (Meehl and

Arblaster 2002). However, a small component of TBO

TABLE 1. Quartiles of annual mean precipitation (mmday21) in WA, EA, and TAS simulated in CPLD and AGCM and the difference

between them (CPLD minus AGCM).

25% 50% 75%

CPLD AGCM Diff CPLD AGCM Diff CPLD AGCM Diff

WA 2.32 2.38 20.06 2.60 2.55 0.05 2.90 2.73 0.17

EA 2.50 2.49 0.01 2.73 2.63 0.10 2.99 2.78 0.21

TAS 2.09 1.69 0.40 2.23 1.81 0.42 2.39 1.94 0.45

FIG. 6. Time series of mean annual rainfall (gray lines) averaged over (a)–(c) WA, (d)–(f) EA, and (g)–(i) TAS for (left) observations,

(center) CPLD, and (right) AGCM simulations. To facilitate visualization, decadal variations using a smoothed time series with an 11-yr

running mean window are shown in green for observations, blue for CPLD, and brown for AGCM. Shaded bars indicate the duration of

the five most severe dry (brown) or wet (blue) spells in the observed (simulated) decadal time series estimated by the largest cumulative

rainfall anomalies. Scale of vertical axis differs among regions.
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can also occur via atmosphere–land interactions only

(Meehl 1994). Li et al. (2012) have shown that about

half of CMIP3 and CMIP5 climate models are able to

simulate TBO-like oscillations involving the ocean–

atmosphere feedbacks during the Indian and Austra-

lian monsoon transitions. Here we identified no biennial

peak in CPLD, only in the AGCM simulation. Onemay

question whether the 2-yr peak is related to a physical

mechanism or a statistical artifact from our power

spectrum analysis. For WA it remains statistically sig-

nificant at the 99% confidence level based on a white

noise process.

6. Simulated intensity and duration of Australian
dry/wet spells

To examine the duration of wet or dry spells, we use

the averaged rainfall over the three selected regions

and count the number of years when rainfall is per-

sistently above or below average. The normalized

frequency distribution for periods of multiple con-

secutive anomalously dry or wet years is displayed in

Fig. 8. Results for each of the three selected regions

are shown and plotted on a logarithmic scale in order

to facilitate examination of the tails of the

distributions.

To assess whether the frequency of dry or wet spells

of a certain duration is different from what would be

expected from a random time series, we perform a

Monte Carlo test where random time series are cre-

ated by reshuffling (with replacement) the simulated

precipitation time series for each selected region. In

this way, we compare the simulations against a ran-

dom sample while preserving certain statistical

properties of the original simulation, such as skew-

ness. The resulting frequency distribution is calcu-

lated and the process is repeated 10 000 times in order

to find the 95% confidence interval.

Figure 8 shows that the number of consecutive dry

or wet years drops off almost exponentially. In the

CPLD simulation there are significantly more 2–3-yr

extreme events and significantly fewer single-year

events than in the AGCM experiment. The largest

change is for single-year events where the CPLD

simulation has between 16% and 55% fewer individ-

ual years than in AGCM (Fig. 8). For both dry and wet

conditions and for all regions the number of single-

year anomalies in CPLD is statistically different

from a random time series at the 95% level. The ab-

sence of ocean variability in the AGCM reduces the

climatic memory provided by the ocean component

and thus generates behavior that more closely

matches a random distribution. In contrast, the ocean

memory in CPLD tends to produce more 2–3-yr-

duration dry and wet spells than expected by chance,

for theWA and EA regions. For durations longer than

3 yr, somewhat surprisingly, there is no evidence that

the ocean variability significantly affects the likeli-

hood of long time-scale events (both AGCM and

CPLD event frequencies are indistinguishable from a

random process). Also interesting is a significant de-

crease in the frequency of 2-yr dry periods in WA

FIG. 7. Power spectrum of annual rainfall anomalies based on themultitaper method for (a),(d),(g) observations, (b),(e),(h) CPLD, and

(c),(f),(i) AGCMand selected regions. The 95% confidence level based on a white noise process is shown by the black dashed line, and the

vertical gray line represents the frequency ofmaximumpower with the associated periodicity indicated next to it. Autocorrelation analysis

of monthly rainfall anomalies simulated in observations (green line), CPLD (blue line), and AGCM (brown line) for (j) WA, (k) EA, and

(l) TAS.
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FIG. 8. Frequency distribution of (left) dry and (right) wet spells: number of events vs spell duration. To facilitate

comparison, the number of events is normalized to 1000 years, and the y axis is a logarithmic scale. Shown are

observations (squares), CPLD (circles), andAGCM (triangles). The dashed lines represent confidence levels based

on the 5th and 95th percentiles of aMonte Carlo test using the simulated time series. Filled symbols are statistically

significant at the 95% confidence level.
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simulated in the AGCM (Fig. 8a), possibly related to

the 2-yr oscillation found in the AGCM power spectra

(Fig. 7c).

It is interesting to see that long dry and wet spells

occur not only in the CPLD run but also in the

AGCM simulation. In fact the duration of dry and

wet spells is essentially indistinguishable from what

we expect from a random distribution, even when the

ocean memory is considered. A rough statistical es-

timate considering a binomial distribution would

give us one random chance in 1024 years of having 10

consecutive years with positive or negative rainfall

[i.e., probability 5 1/(210)]. Therefore, it is not sur-

prising that both experiments simulate dry and wet

spells up to a 10-yr length over the course of the

around 1000-yr simulations. Durations longer than

that are rare in a random sample [i.e., the 11-yr dry

spell in EA simulated by AGCM (Fig. 8c) and 10-yr

dry spell in TAS simulated by CPLD (Fig. 8e)]. Any

comparison with observations should be made with

caution as the length of the time series is about

6 (8) times shorter than CPLD (AGCM); there is

therefore a much lower chance of having dry and wet

spells persisting for longer than 6 years. Despite that,

observations show an increased frequency of 7-yr dry

and wet spells in WA and 7-yr dry and 8-yr wet spells

in EA (Figs. 8a,d).

For each selected region we examine the severity and

return period of dry and wet spells with different dura-

tions (Fig. 9). Regardless of the duration of the spells,

dry and wet periods simulated by the CPLD simulation

are more severe than for the AGCM, except for the 7-yr

dry spell in WA, the 7-yr wet spell in EA, and the 5-yr

wet spell in TAS. This reveals the importance of ocean

variability for intensifying rainfall events over Australia.

The return period of dry and wet events for TAS is

similar between the two simulations. For events with a

single-year duration, AGCM has a shorter return period

than CPLD. Conversely, for spells with a 2–3-yr dura-

tion, AGCM produces longer return periods than

CPLD. We caution comparing the return period of

events longer than about 5 yr because of the limited

FIG. 9. Severity and return period of (left) dry and (right) wet spells with a given duration (x axis) over

(a),(b) WA, (c),(d) EA, and (e),(f) TAS for observations (green), CPLD (blue), and AGCM (brown). Severity is

calculated as the mean cumulative sum of averaged annual rainfall anomaly (mmday21). Return period is esti-

mated as the mean interval (years) between the beginning of two consecutive events with a given duration. Right y

axis is plotted on a logarithmic scale to facilitate visualization of events with short duration. Note that symbols and

lines are discontinuous if no events are found with a given duration (refer to Fig. 8 for number of events).
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sample size (see Fig. 8 for number of events with a given

duration). Same caution should thus be taken for com-

parison with observations.

7. Decadal variability: Megadroughts and
megapluvials

Multidecadal variability is simulated in both experi-

ments, as shown in the decadal rainfall time series of

Fig. 6. Decadal rainfall variability is substantially lower

than interannual variability. Here we use observations

to show that the decadal-to-interannual variability ratio

is underestimated in the NCAR CESMmodel (Table 2)

for all three regions. This is because simulated decadal

variability is considerably smaller than in observations;

that is, the values of decadal variability in the three

regions range from 0.06 to 0.12mmday21 in CPLD

and AGCM compared to 0.12–0.17mmday21 in

observations (OBS).

The decadal variability in the simulations is compa-

rable between CPLD and AGCM. Consequently, the

decadal-to-interannual variability ratio in the AGCM is

slightly larger than CPLD, given the relatively lower

interannual variability in the AGCM. This is somewhat

contrary to what we expect, given that intuitively the

ocean memory should contribute to long-term variabil-

ity in the simulations. On the other hand, we have shown

previously that the ocean does not seem to affect the

duration of dry and wet spells beyond around 3 yr.

Therefore, we find that ocean processes in the CESM do

not cause significant changes in rainfall frequency and

strength at decadal time scales.

Notwithstanding the weak decadal variability in the

CESM, long-term droughts and dry spells are simu-

lated in both experiments. We highlight in Fig. 6 the

most severe megadroughts and megapluvials in the

smoothed time series. These are selected by calculat-

ing the periods of largest accumulated rainfall deficit

and surplus for continuous dry or wet spells in the 11-yr

running mean time series. The CPLD run simulates a

megadrought with maximum duration of 41 yr in EA

(Fig. 6e). This length is on the same order as the 39-yr

megadrought in eastern Australia recently identified

in paleoreconstructions by Vance et al. (2015) and

associated with the IPO. The decadal time series for

observations reveal a period of averaged dry condi-

tions for about 35 yr in EA from 1913 to 1947

(Fig. 6d), a period of predominantly positive IPO. The

CPLD rainfall over continental Australia is signifi-

cantly correlated with the IPO in the model, with a

coefficient of 20.30 in WA and 20.25 in EA. This

agrees with previous studies that reported a strong

modulation of Australian rainfall by the IPO using

reconstruction data and twentieth-century observa-

tions (e.g., Gergis et al. 2012; Palmer et al. 2015; Power

et al. 1999). The decadal rainfall time series regressed

onto the SST and low-level wind anomalies (Fig. 10)

supports the findings that the IPO modulates the

Australian megadroughts and megapluvials in the

model. This reveals a significant negative IPO pattern

associated with positive rainfall in WA, in EA, and to a

lesser extent in TAS (Fig. 10).

The AGCM also simulates megadroughts and mega-

pluvials (Figs. 6c,f,i), even in the absence of ENSO and

the IPO. Although the AGCM long-term events are

overall less severe than the CPLD (consistent with the

reduced rainfall variability due to the absence of the

ocean feedback), the megadroughts and megapluvials

simulated in the AGCM last as long as those in CPLD,

with maximum persistence of 40 and 43 yr, respectively,

in WA.

The regression pattern between the AGCM de-

cadal rainfall time series and sea level pressure and

wind anomalies shows significant variability in the

eastern Indian Ocean and northern Australia for WA

and EA, respectively (Figs. 11a,b). This pattern is

dominant during austral summer (not shown), and it

suggests that positive rainfall in both WA and EA are

related to perturbations of easterly winds due to an

anomalous monsoonal low in the eastern Indian

TABLE 2. Interannual variability and decadal-to-interannual variability ratio for observations (OBS) and simulations (CPLD and

AGCM) over the selected regions. Interannual variability is calculated as the standard deviation of annual rainfall time series after

removing the decadal variability. Decadal variability is calculated as the standard deviation of the 11-yr smoothed annual rainfall time

series. To account for the length of the different time series, we calculate variability as themean of 100 times the random114-yr subperiods

from the simulated rainfall time series. An error estimate for the mean variability is given as the standard deviation of the 100 random

samples.

OBS CPLD AGCM

Interannual

(mmday21)

Decadal-to-

interannual ratio

Interannual

(mmday21)

Decadal-to-

interannual ratio

Interannual

(mmday21)

Decadal-to-

interannual ratio

WA 0.22 0.56 0.37 6 0.01 0.34 6 0.06 0.23 6 0.02 0.44 6 0.06

EA 0.28 0.60 0.30 6 0.03 0.36 6 0.05 0.18 6 0.01 0.43 6 0.06

TAS 0.44 0.33 0.20 6 0.01 0.37 6 0.04 0.16 6 0.01 0.41 6 0.06
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Ocean extending toward Western Australia. An

anomalous cyclonic circulation is associated with

the enhanced monsoon trough, which in turn drives

northeasterly wind anomalies inland, leading to in-

creased moisture advection and positive rainfall.

For TAS (Fig. 11c), decadal variations of rainfall in

the AGCM simulation is related to an anomalous

low pressure center in the southern midlatitudes

resembling a localized SAM pattern over the Aus-

tralian sector. The reason why the SAM shows de-

cadal excursions in the Australian sector is unclear.

The SAM is a mode of variability largely intrinsic to

the atmosphere and in principle has no preferred

periodicity; that is, it can occur from intraseasonal

to multidecadal time scales.

8. Discussion

We have found that intrinsic variability in the

atmosphere–land system can drive extended periods of

dry and wet episodes. This is in agreement with previous

studies that reported the importance of stochastic at-

mospheric variability to the generation of megadroughts

in many parts of the globe (Hunt 2011). We also found

that ocean processes become unimportant for pre-

cipitation persistence in Australia after about three

FIG. 10. CPLD rainfall time series regressed onto sea surface temperature (8C) and 850-hPa wind (m s21)

anomalies for (a)WA, (b) EA, and (c) TAS. Rainfall time series are smoothedwith an 11-yr runningmeanwindow.

Black thin contours encompass areas statistically significant at the 95% level based on a Student’s t test.
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years. This is in agreement with findings by Boer et al.

(2013), who documented a decline in potential pre-

dictability of precipitation and temperature as a result of

ocean variability on interannual time scales at about

3 yr. Boer and Lambert (2008) have shown that potential

predictability of precipitation then increases somewhat

at longer time scales over the oceans at mid to high

latitudes where the surface is connected to the

deeper ocean.

One caveat here is that this is a numerical study based

on a single model (i.e., the NCAR CESM). Given that

climate models have considerable variability in their

representation of ENSO on multidecadal-to-centennial

time scales (e.g., Wittenberg 2009), as well as in

atmospheric teleconnection patterns (Coats et al.

2013b), it is possible that our results are at least in part

model dependent. However, the fact that previous

studies have found similar results using different climate

models supports our findings. For instance, using

ECHAM4 and the global Hamburg Ocean Primitive

Equation (ECHO-G) coupled atmosphere–ocean GCM,

Coats et al. (2013a) show that stochastic atmospheric

variability is able to drive persistent drought in south-

western North America. Hunt (2009) analyzed a mil-

lennium simulation with the CSIRO Mark 2 coupled

global model and concluded that stochastic atmospheric

processes are the cause of extensive dry periods in

Australia, implying no predictability of onset, duration,

FIG. 11. AGCM rainfall time series regressed onto sea level pressure (hPa) and 850-hPa wind (m s21) anomalies

for (a)WA, (b) EA, and (c) TAS. Rainfall time series are smoothedwith an 11-yr runningmeanwindow. Black thin

contours encompass areas statistically significant at the 95% level based on a Student’s t test.
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or termination of dry episodes. More recently,

Stevenson et al. (2015) showed that simulated mega-

droughts in North America in the NCAR CESM are

primarily generated by internal atmospheric variability

combined with land surface coupling.

Another important aspect of our study is that our

model simulations were designed to eliminate the

ocean SST variability. As such, they still contain vari-

ability from the land and ice components. While sea ice

is very unlikely to affect precipitation over Australia at

the spatial and temporal time scales studied here, land

variability can affect atmospheric circulation and

thermodynamics. For example, Timbal et al. (2002)

have shown that fluctuations of soil moisture increase

the persistence and the variance of surface temperature

and rainfall particularly over Australia. Thus, our re-

sults potentially reflect a combined effect of the at-

mosphere and land feedbacks on Australian dry and

wet spells. Separating those effects is only possible via

additional numerical simulations where land in-

teractions are suppressed. This will be addressed in a

future study.

9. Summary and conclusions

This study examines the potential role of internal

atmosphere and land variability in controlling the fre-

quency, duration, and intensity of long-term dry and

wet spells over Australia. Two multicentury-scale

simulations were performed with the NCAR CESM:

1) a fully coupled simulation (CPLD) and 2) an atmo-

spheric model forced by a seasonal SST climatology

derived from the coupled experiment (ACGM), such

that the SST climatologies of the two experiments

are identical. While CPLD contains variability from

the ocean, sea ice, land, and atmosphere, the AGCM

experiment eliminates fluctuations due to oceanic

variability. The main results of this study can be sum-

marized as follows.

(i) Intensity: Ocean variability makes droughts and

wet spells worse. Comparison between the CPLD

and AGCM simulations shows that in general

interannual rainfall variability over Australia is

reduced in the absence of ocean variability. The

rainfall distribution in AGCM is less skewed than

in CPLD over most of Australia, and dry and wet

extremes in CPLD are more severe than in the

AGCM. Ocean feedback processes enhance west-

ern and eastern Australia rainfall variability by

about 60% compared to atmosphere-driven pro-

cesses. This is mainly associated with an increase in

the upper tail of the rainfall distribution. For

Tasmania, the main contribution of ocean variabil-

ity is to increase the mean rainfall, without affect-

ing the variability (i.e., annual mean rainfall over

TAS is around 20% larger in CPLD than AGCM).

The reason why ocean feedback affects rainfall

variability in continental Australia but mean rain-

fall in Tasmania is unclear but suggests that differ-

ent mechanisms may be responsible for those

differences.

(ii) Duration: Internal atmosphere- and land-forced

dry and wet spells can last as long as ocean-driven

events. The internal variability of the atmosphere–

land system is capable of producing long periods of

below- and above-average rainfall in Australia.

The ocean memory has its largest impact at rela-

tively short time scales (i.e., up to 3 yr). For time

scales longer than that, ocean variability does not

seem to influence the duration of wet and dry spells.

We show that prolonged dry and wet spells occur

not only in the CPLD but also in the AGCM;

however, their durations are both indistinguishable

from a random process. Power spectra analysis

supports the finding that ocean memory acts

around the interannual time scale range; that is,

spectral energy concentrates around the 3–4-yr

period, associated with ENSO events, while de-

cadal variability cannot be distinguished from a

Gaussian white noise process. This poses a chal-

lenge for long-term drought predictions for

Australia.

(iii) Frequency: Internal atmosphere- and land-driven

dry and wet spells occur as often as those driven by

ocean processes. Overall, there is little distinction

between dry and wet spell frequency in the CPLD

and AGCM simulations. The clear exception is

1-yr-duration events, which occur more often in the

AGCM, and the 2–3-yr-duration events, which

occur more often in the CPLD run.

(iv) Spatial scale: Ocean variability plays an important

role in generating large-scale rainfall impacts over

Australia. Rainfall events below (above) the 25th

(75th) percentile affecting over 70% of Australia

occur 2 (17) times more often in the CPLD than in

the AGCM simulation. Also interesting is the fact

that wet spells generally tend to impact a larger

area of Australia than dry spells, a feature found in

the observations and simulated in the CPLD

experiment. The reason for this wet and dry

spatial asymmetry is unclear; however, given that

this is not seen in the AGCM, it is likely to be

linked with an asymmetric response of Australian

rainfall to ocean modes of variability, such as El

Niño and La Niña events.
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(v) Multidecadal variability: Internal atmosphere–

land variability is able to generate megadroughts

and megapluvials. Compared to observations,

decadal variability is underestimated (especially

for TAS), regardless of the inclusion of ocean

variability and ocean–atmosphere coupling. De-

spite lower intensity, the AGCM simulation

generates prolonged rainfall events, or so-called

megadroughts and megapluvials, with durations

comparable to those of the CPLD simulation.

Mega-rainfall events are primarily associated

with IPO variability in the CPLD run, while in

the AGCM they appear to be primarily related to

perturbations in themonsoonal low and winds in the

eastern Indian Ocean and northern Australia for

WA and EA and to the SAM variability for TAS.

Further investigation is under way to uncover the

mechanisms responsible for the atmosphere-only-

driven megadroughts and megapluvials.
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