

Impact of Mesoscale Eddies on the Vertical Nitrate Flux in the Gulf Stream Region

Shuwen Zhang¹, Enrique Curchitser¹, Charlie Stock², Dujuan Kang¹, Raphael Dussin¹

1 Department of Environmental Sciences, Rutgers University. 2 NOAA Geophysical Fluid Dynamics Laboratory, Princeton University.

1. Summary

- A high-resolution 25-year simulation is performed in Gulf Stream (GS) region using a coupled physical-biological model.
- A large sample of mesoscale eddies are detected and tracked, ulletand the eddy-centric composites are created.
- The long-term averaged contribution of cyclonic eddies (CEs) • and anticyclonic eddies (ACEs) to the vertical NO₃ flux into the euphotic zone (Z_{eu}) are both positive.
- The eddy-wind-interaction-induced Ekman pumping is likely the ulletdominant mechanism for the enhanced NO_3 flux at Z_{eu} in ACEs.

4. Eddy Composites

5. Mechanism

Vertical velocity

2. Numerical Model

- Physical model: ROMS over Northwest Atlantic (NWA) with 7km horizontal resolution and 40 vertical levels
- Biogeochemical model: NOAA/GFDL's Carbon, Ocean, Biogeochemistry and Lower Trophics (COBALT) model

Fig 1. (Left) A snapshot of SST from ROMS-COBALT simulation. (Right) Schematic of N-based state variables in COBALT [Stock et al., 2014b]. Fig 4. Composites of temperature, salinity and potential density in (upper) ACE and (lower) CE along the vertical-latitudinal transect across the eddy center. x-axis is the normalized radius; negative (positive) means south (north).

Fig 8. Composites of vertical velocity and mixing coefficient

(left) along the latitudinal transect across the eddy center and (right) on the horizontal plan Z_{eu} in ACE.

Fig 2. Mean surface chl from (left) SeaWiFS during 1998-2007 and (right) coupled ROMS-COBALT simulation during 1983-2007.

Fig 5. Composites of NO_3 and its anomalies for (upper) ACE and (lower) CE.

 NO_3 anomalies are derived by subtracting the annual average from the daily field.

Fig 9. Vertical NO₃ flux driven by (left) vertical advection and (right) vertical mixing at Z_{eu} in ACE.

Wind stress and Ekman pumping

3. Eddy Detection and Tracking

0.8

ACE

Fig 3. ACE and CE occurrence during 1983–2007. Black curve is the mean GS pathway and grey contour is the 1000m isobath.

(Left) Schematic of the wind-30°N 80°W 30°N└____ 80°W 75°W 70°W 60°W 55°W 65°W 70°W 75°W 65°W 60°W 55°W current-interaction-induced Current: ---> Fig 6. Vertical-integrated NO₃ anomalies for all (left) ACEs and (right) CEs above Z_{eu} . Ekman pumping. Divergence: 💽 Ekman Transport: 📃

CE

Table 1. Eddy properties with standard deviations in parentheses.

	Number		Duration	Radius	Distance
	Total	Per year	(days)	(km)	(km)
ACE	740	30 (5.5)	31 (7.5)	81 (27.7)	167 (39.6)
CE	612	24 (5.3)	46 (20.63)	88 (21.2)	193 (72.1)

Fig 7. Fraction of ACEs (red) and CEs (blue) with positive NO₃ anomalies above Z_{eu} .

6. Reference

• Stock, C.A., J.P. Dunne, and J.G. John (2014b), Global-scale carbon and energy flows through the marine planktonic food web: an analysis with a coupled physical-biological model, Prog Oceanogr., 120, 1–28. • Kang, D., and E. N. Curchitser (2013), Gulf Stream eddy characteristics in a high-resolution ocean model, J. Geophys. Res. Oceans, 118, 4474–4487

• McGillicuddy, D., et al. (2007), Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms, Science, 316(5827), 1021.