Revisiting the blueprints for blue carbon:

is salt marsh sediment organic carbon a source of emissions after wetland loss?

Nathan McTigue*, Quentin Walker, Ryan Giannelli, & Carolyn Currin National Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration, Beaufort, NC *nathan.mctigue@noaa.gov

Introduction

Salt marshes have enormous potential to bury and store organic carbon in sediment for centuries to millennia. However, little is known about the fate of this carbon pool after degradation events, particularly erosion that would unbury and expose it to aerobic and photo-oxidizing environments in tidal creeks. Currently, estimates in the literature span from 25% to 100% oxidation of preserved organic carbon in wetlands upon degradation¹ (e.g., land-use change or erosion), but few experimental data exist to substantiate this potential range. Therefore, we devised an experimental approach to provide empirical data that better constrains possible ranges of potential CO₂

indicates substrate quality affects respiration rate

WHAT IS FATE OF

STORED CARBON?

LEAVES

STEMS

BELOWGROUND PRODUCTION

LONGTERM CARBON BURIAL

gas analyzer (GGA; Los Gatos, Inc.)

$\left| \begin{array}{c} Q_{10-q} = \frac{Time\ required\ for\ 1\%\ to\ decompose\ at\ 20^{\circ}C}{Time\ required\ for\ 1\%\ to\ decompose\ at\ 30^{\circ}C} \end{array} \right|$ $\ln k_2 = -\frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) + \ln k_1$ Q_{10-q} standardizes Q_{10} to substrate quality as it Activation energy (E_a) can be thought of as changes during an experiment. An increase in Q_{10-q} the biochemical resistance of a substrate to

catalysis³.

Results & Discussion

Table 1. Characteristics of the two sediment horizons incubated during the 161 day experiment.

Sediment Horizon	Depth (cm)	¹⁴ C Age* (cal BP)	OC Content (%)	C:N (mol:mol)	Q ₁₀	Activation Energy (kJ mol ⁻¹)	Decomposition Rate (mmol C mol C ⁻¹ yr ⁻¹)
Shallow	5 - 10	110±35	11.9±0.2	22.9±0.8	2.0	49.7	230±3
Deep	20 - 25	320±35	9.5±0.1	21.4±0.4	2.2	58.8	168±2

*estimated from a linear age-depth model: a sample of OC from 92 cm was aged at 1290±15 cal BP, or 14 yrs cm⁻¹. However, younger OC from the root zone was captured at the shallow depth.

- Decomposition rates were linear over the 161 day experiment.
- CH_4 production was negligible at 3-4 orders of magnitude less than CO_2 production.

more than temperature².

Over the duration of this experiment, Q_{10-q} did not increase; thus, temperature was the most important driver of decomposition, as reflected in linear decomposition rates.

Fig 3. Comparison of Q_{10-q} for the 1st and 5th percent of carbon loss

- Using monitoring data, creek temperature was converted to annual decomposition rates using Arrhenius kinetics (Table 1).
- Although shallow sediment decomposed faster than its deep counterpart, decomposition rates for both depth horizons exhibited temperature sensitivity.
- Deep sediment is more resistant to remineralization, but the reaction is more sensitive to temperature, as predicted by the Carbon-Quality Temperature hypothesis^{2,4}.
- Therefore, relatively stable organic matter will exhibit enhanced decomposition as
- temperature increases.

• These average rates (16.8 - 23.0%) constrain previous estimates of 25-100% OC remineralization¹.

Fig. 4. (Left) Annual temperature profile for the study site. (Right) Decomposition rates integrated over time at each temperature.

Implications

Table 2. Updated calculations of potential carbon emissions.

	Global Salt Marsh Extent (Mha)	Marsh Area Loss Rate (% yr ⁻¹)	Sediment Carbon Decomposition Rate (% yr ⁻¹)	At-risk Carbon Stock in Top 1 m of Marsh* (Mg C ha ⁻¹)	Carbon Emissions** (Pg CO ₂ yr ⁻¹)
Pendleton et al. 2012	2.2 - 40	1.0 - 2.0	25 - 100	65 - 259	0.02 - 0.24
This study	10 40	10 20	17 23	/1 60	0.05 0.13

The "salt marsh carbon pump" effectively stores CO₂ since long-term net carbon accumulation stockpiles refractory OC that resists rapid decomposition, although the enzymatic kinetics of its breakdown is temperature sensitive.

> CO_2 release (respiration &

*Sediment Carbon Decomposition Rate x 259 Mg C ha⁻¹ (mean stock for above-ground biomass and top 1m^{1,5,6}) **1 g C = 3.67 g CO₂; the non-parametric 90% confidence interval is presented as a range

This study updates the range of potential emissions from wetland loss by:

- Improving the minimum global salt marsh extent from new data^{7,8}
- Narrowing the sediment carbon decomposition rate through empirical research

Fig. 5. Conceptual schematic of the salt marsh carbon pump. Upon marsh erosion, OC that has passed through the pump resists rapid decomposition and is likely reburied before it completely remineralizes.

References & Acknowledgments

1. Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kauffman JB, Marba N, Megonigal P, Pidgeon E, Herr D, Gordon D, Baldera A (2012). Estimating global "blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE &(9): e43542. 2. Conant RT, Drijber RA, Haddix ML, Parton WJ, Paul EA, Plante AF, Six J, Steinwg M (2008). Sensitivity of organic matter to warming varies with its quality. Global Change Biology 14: 868-877. 3. Todd-Brown KEO, Hopkins FM, Kivlin SN, Talbot JM, Allison SD (2011). A framework for representing microbial decomposition in coupled climate models. Biogeochemistry 109: 19-33. 4. Craine JM, Fierer N, McLauchlan KK (2010). Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nature Geoscience 3: 854-857. 5. Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006). The carbon balance of North American wetlands. Wetlands 26: 889–916.

THE NATIONAL ACADEMIES

sers to the Nation on Science, Engineering, and Medicine

0.03 - 0.13

6. Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003). Global carbon sequestration in tidal saline wetland sediments. Global Biogeochemical Cycles 17: 1111.

7. Nahlik AM, Fennessy MS (2016). Carbon storage in US wetlands. Nature Communications 7(13835): 1-9.

8. Gumbricht T, Roman-Cuesta RM, Verchot L, Herold M, Wittmann F, Householder E, Herold N, Murdiyarso D (2017). An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Global Change Biology: 1-19.

