Inland Water Dissolved Fluxes

Peter A. Raymond, Yale School of Forestry and Environmental Studies

Evolution of Inland Water C

Sarmiento and Gruber (2002)

Richey et al.

Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO₂

Jeffrey E. Richey*, John M. Melack†, Anthony K. Aufdenkampe*, Victoria M. Ballester‡ & Laura L. Hess†

* School of Oceanography, University of Washington, Seattle, Washington 98195, USA

 † Institute for Computational Earth System Science, University of California, Santa Barbara, California 93106, USA
‡ Centro de Energia Nuclear na Agricultura, Caixa Postal 96, Piracicaba SP, Brazil

basin constitutes an important carbon loss process, equal to $1.2 \pm 0.3 \text{ Mg Cha}^{-1} \text{ yr}^{-1}$. This carbon probably originates from organic matter transported from upland and flooded forests, which is then respired and outgassed downstream. Extrapolated across the entire basin, this flux—at 0.5 Gt Cyr⁻¹—is an order of magnitude greater than fluvial export of organic carbon to the ocean⁸. From these findings, we suggest that the overall carbon

Sabine et al 2004

The boundless carbon cycle

Tom J. Battin, Sebastiaan Luyssaert, Louis A. Kaplan, Anthony K. Aufdenkampe, Andreas Richter and Lars J. Tranvik

COUPLED BIOGEOCHEMICAL CYCLES

Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere

Anthony K Aufdenkampe^{1*}, Emilio Mayorga², Peter A Raymond³, John M Melack⁴, Scott C Doney⁵, Simone R Alin⁶, Rolf E Aalto⁷, and Kyungsoo Yoo⁸

Zone-class	Area of inland waters (1000s km ²) min-max	рСО2 (ppm) median	Gas exchange velocity (k ₆₀₀ , cm hr ⁻¹) median	Areal outgassing (g C m ⁻² yr ⁻¹) median	Zonal outgassing (Pg C yr ⁻¹) median
Lakes and reservoirs	1840-1840	1900	4.0	240	0.45
Rivers (>60-100 m wide)	146-146	3600	12.3	1600	0.23
Streams (<60-100 m wide) 60–60	4300	17.2	2720	0.16
Wetlands	3080-6170	2900	2.4	240	1.12
Temperate (25°-50°)					
Lakes and reservoirs	880-1050	900	4.0	80	0.08
Rivers (>60-100 m wide)	70-84	3200	6.0	720	0.05
Streams (<60-100 m wide) 29-34	3500	20.2	2630	0.08
Wetlands	880-3530	2500	2.4	210	0.47
Boreal and Arctic (50°-90°)					
Lakes and reservoirs	80-1650	1100	4.0	130	0.11
Rivers (>60-100 m wide)	7-131	1300	6.0	260	0.02
Streams (<60-100 m wide) 3–54	1300	13.1	560	0.02
Wetlands	280-5520	2000	2.4	170	0.49
Global	Percent of global land area				\sim
Lakes and reservoirs	2800-4540	2.1%-3.4%			0.64
Rivers (>60-100 m wide)	220-360	0.2%-0.3%			0.30
Streams (<60-100 m wide	90-150	0.1%-0.1%			0.26
Wetlands	4240-15220	3.2%-11.4%			2.08
All inland waters	7350-20 260	5.5%-15.2%			3.28

2011

Active Pipe Model

174 J. J. Cole and others

- Inland Waters historically seen as "passive pipe"
- Currently trying to work out fluxes of "active pipe" model

Global Inland Water CO₂ Evasion

River CO2

- 6,709 sites with CO₂ calculated from alkalinity and pH
- Not correlated strongly with anything
- Regional CO₂ was interpolated from individual sites
- Global average= ~3500 μatm (used medians)

Stream/River CO₂ Sites

- 6,709 sites with CO₂ calculated from alkalinity and pH
- Not correlated strongly with anything
- Regional CO₂ was interpolated from individual sites
- Global average= ~3500 μatm (used station medians)

Stream Surface Area

- Very few estimates of global stream and river surface area. *No spatially resolved estimate*.
- Estimated from length and width by stream order
- Length gathered from HydroSHEDS
- Width from discharge and hydraulic equations
- Corrected for stream drying and freezing

Stream Surface Area - Length

- Use digital elevation maps
- Global: HydroSHEDS for length (Lehner et al. 2008).
- United States: National Hydraulic Data set (NHD)
- NHD has a better resolution than HydroSHEDS

Stream Surface Area- Width Comparing Two Data Sets

6 y = 2.56 + 0.423xC 5 $r^2 = 0.82$ 4 In Width (m) 3 2 1 0 -1 -2 -8 -10-6 -2 6 0 2 8 In Discharge (m³ s⁻¹)

Raymond et al. submitted from USGS data

Fig. 1 Hydraulic geometry relationships for streams and rivers of this study. Presented are the relationships between discharge and velocity (A), depth (B), and width (C).

Raymond et al. 2012

 $W = aQ^b$

Global surface area by stream order

- Large differences due to equations
- Importance of small streams

Climatic Regulation of Surface Area

- Greater surface area in wetter regions.
- Width relationship with Precip, stronger than length Density

River Surface Area

- Total Surface area of 624,000km² (0.5% earth surface)
- Aufdenkampe 2011: 320,000-510,000km²
- Downing et al. 2012: 485,000-662,000km²
- Approximately 88,000km² is blocked by ice
- Approximately 84,000km2 not active due to drying

Stream Gas Transfer Velocity (k₆₀₀)

47 · Gas transfer velocity and hydraulic geometry · Raymond et al.

Table 2 Fitted equations for predicting the k_{600} (m d⁻¹) based on stream velocity (*V*, in m s⁻¹), slope (*S*; unitless), depth (*D*, in meters), discharge (*Q*, in m ³ s⁻¹), and the Froude number ($Fr = V/(gD)^{0.5}$). Also displayed are the standard deviations (± 1 SD) for the equation parameters, r^2 , slope (±SE), and *y*-intercept (±SE for regressions of the equation output vs. actual values; Fig. 3). All *p*-values for the regressions are 0.0001.

Model equation	r ²	Slope	y-Intercept
$1. k_{600} = (VS)^{0.89 \pm 0.0.020} \times D^{0.54 \pm 0.030} \times 5037 \pm 604$	0.72	0.92 ± 0.024	0.98 ± 0.17
2. $k_{600} = 5937 \pm 606 \times (1 - 2.54 \pm 0.223 \times Fr^2) \times (VS)^{0.89 \pm 0.017} \times D^{0.58 \pm 0.027}$	0.76	0.94 ± 0.022	0.76 ± 0.16
$3. k_{600} = 1162 \pm 192 \times S^{0.77 \pm 0.028} V^{0.85 \pm 0.045}$	0.54	0.91 ± 0.036	0.91 ± 0.24
4. $k_{600} = (VS)^{0.76 \pm 0.027} \times 951.5 \pm 144$	0.53	0.82 ± 0.037	0.92 ± 0.24
5. $k_{600} = VS \times 2841 \pm 107 + 2.02 \pm 0.209$	0.55	1.0 ± 0.038	$-4.8 \times 10^{-3} \pm 0.26$
6. $k_{600} = 929 \pm 141 \times (VS)^{0.75 \pm 0.027} \times Q^{0.011 \pm 0.016}$	0.53	0.92 ± 0.036	0.81 ± 0.24
7. $k_{600} = 4725 \pm 445 \times (VS)^{0.86 \pm 0.016} \times Q^{-0.14 \pm 0.012} \times D^{0.66 \pm 0.029}$	0.76	0.95 ± 0.023	0.57 ± 0.17

- K₆₀₀ is a function of turbulence at the surface of streams
- Calculated from slope and velocity (Raymond et al. 2012) from 563 independent measuremens
- Velocity estimated from discharge and hydraulic equations
- Slope gathered from Hydrosheds

 $V = cQ^d$

Global Stream/River Evasion

- 1.8Pg yr⁻¹ (2.2 with lakes and reservoirs)
- 70% of CO2 from 20% of Earth surface
- High Fluxes from Southeast Asia, Amazonia, Central America, Europe, regions of South America west of the Andes, Southeast Alaska, western Africa, and the eastern edge of East Asia

- Soil CO₂
 - Assume all soil water entering inland waters (40,000km³ yr⁻¹) has CO₂ concentration of 50,000µatm that evades = 1.0Pg yr⁻¹.

- Soil CO₂. 1 Pg yr⁻¹
- Terrestrial OM Decomposition
 - Assume lateral transport of soil OM is twice as large as what is exported to the ocean and that this OM is oxidized and evaded as CO₂. ~0.4Pg yr⁻¹

- Soil CO₂. 1 Pg yr⁻¹
- Terrestrial OM Decomposition. 0.4Pg yr⁻¹
- Wetland and riparian root respiration.
 - Assume 20% of wetland NPP (6Pg yr⁻¹) is transferred laterally as C and evaded as CO₂

- Soil CO₂. 1 Pg yr⁻¹
- Terrestrial OM Decomposition. 0.4Pg yr⁻¹
- Wetland and riparian root respiration. 1.2Pg yr⁻¹

@AGUPUBLICATIONS

Global Biogeochemical Cycles

RESEARCH ARTICLE

10.1002/2014GB004941

Key Points:

- First global maps of river CO₂ partial pressures and evasion at 0.5° resolution
- Global river CO₂ evasion estimated at 650 (483–846) Tg C yr⁻¹
- Latitudes between 10°N and 10°S contribute half of the global CO₂

Spatial patterns in CO₂ evasion from the global river network

Ronny Lauerwald^{1,2,3}, Goulven G. Laruelle^{1,4}, Jens Hartmann³, Philippe Ciais⁵, and Pierre A. G. Regnier¹

¹Department of Earth and Environmental Sciences, Université Libre de Bruxelles, Brussels, Belgium, ²Institut Pierre-Simon Laplace, Paris, France, ³Institute for Geology, University of Hamburg, Hamburg, Germany, ⁴Department of Earth Sciences-Geochemistry, Utrecht University, Utrecht, Netherlands, ⁵LSCE IPSL, Gif Sur Yvette, France

- Significantly lower estimate
 - 0.65 vs 1.3 Pg yr⁻¹

Globally significant greenhouse-gas emissions from African inland waters

Alberto V. Borges^{1*}, François Darchambeau¹, Cristian R. Teodoru², Trent R. Marwick², Fredrick Tamooh^{2,3}, Naomi Geeraert², Fredrick O. Omengo², Frédéric Guérin⁴, Thibault Lambert¹, Cédric Morana², Eric Okuku^{2,5} and Steven Bouillon²

- Significantly higher estimate
 - 0.4 vs 0.1 Pg yr⁻¹

How much riverine DOC makes it to the ocean?

Study	Estimate
	(Pg yr ⁻¹)
Schlesinger and	0.37-0.41
Melack (1981)	
Ludwig et al. (1996)	0.21
	0.20
Meybeck (1993)	
Aitkenhead and	0.36
McDowell (2000)	
Meybeck (1982)	0.22
Harrison et al. (2005)	0.17
Seitzenger et al. (2005)	
Mayorga et al. (2010)	0.16
Dai et al. (2012)	0.21-0.22
• •	
Raymond and Spencer (2014)	0.25

- There are now numerous estimates
- They are a bit incestuous in the data they utilize (still room for improvement)
- Annual variation of ~25%

DOC flux for top 30 rivers ranked by discharge

Raymond and Spencer (2014)

- 36% of land draining into ocean
- 50% of global ocean discharge

DIC/Alkalinity Fluxes

- Facilitated by strong relationship between fluxes and climate/lithology
- 70% of flux, 10% area
- ~0.35 Pg C yr⁻¹ (as bicarbonate)

Active Pipe Model-Global

174 J. J. Cole and others

Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting

David Butman^{a,b,1}, Sarah Stackpoole^c, Edward Stets^a, Cory P. McDonald^d, David W. Clow^c, and Robert G. Striegl^a

SNAS

^aUS Geological Survey, Boulder, CO 80303; ^bSchool of Environmental and Forest Sciences and the Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195; ^cUS Geological Survey, Denver, CO 80225; and ^dWisconsin Department of Natural Resources, Madison, WI 53707

Edited by William H. Schlesinger, Cary Institute of Ecosystem Studies, Millbrook, NY, and approved November 12, 2015 (received for review June 29, 2015)

NATURE GEOSCIENCE DOI: 10.1038/NGEO1830

REVIEW ARTICLE

'LUC' affected ecosystems

'LUC' affected ecosystems

Regnier et al. 2013

Thank you

- Funding: NASA grant (NNX11AH68G)
- Jens Hartmann, Ronny Lauerwald, Sebastian Sobek, Cory McDonald, Mark Hoover, David Butman, Rob Striegl, Emilio Mayorga, Christoph Humborg, Pirkko Kortelainen, Hans Durr, Michel Meybeck, Philippe Ciais, Peter Guth
- Rob Spencer