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Anthropogenic climate change drives shift and shuffle ;,\;3
in North Atlantic phytoplankton communities
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Regime shifts — an abrupt change between contrasting persistent states in an ecosystem
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Climate change-related regime shifts have altered spatial

synchrony of plankton dynamics in the North Sea
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The search for climate change analogues

SeaWiFS Ocean Chlorophyll and NDVI
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A few regime shifts are slow enough to match warming trends
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However the clusters of environmental change

do not match that for climate change
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Marine Ecosystem Response to the Atlantic Multidecadal
Oscillation
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Our findings suggest that the AMO is far from a trivial presence against
the backdrop of continued temperature warming in the North Atlantic
and accounts for the second most important macro-trend in North
Atlantic plankton records; responsible for habitat switching (abrupt
ecosystem/regime shifts) over multidecadal scales.



Biological responses to environmental fluctuations

Phytoplankton encounter a mix of
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Phytoplankton adapt to changing ocean environments

Andrew J. Irwin®", Zoe V. Finkel®, Frank E. Miiller-Karger®, and Luis Troccoli Ghinaglia®

. LETTER

Reply to Brun et al.: Fingerprint of evolution
£ revealed by shifts in realized phytoplankton
e niches in natural populations

Measuring evolutionary adaptation of
£ phytoplankton with local field observations
7,

Irwin et al. recently published a study that Irwin et al. investigated local populations We suggest instead that temperature is not
= investigates the capacity of phytoplankton that may have evolved narrower thermal a limiting factor for most species in the
to adapt their ecological niches to changing niches. However, isolated phytoplankton considered environment and that the changes



ISSUES

We know shifts in phytoplankton community structure propagate through foodwebs so
a mechanistic understanding of environmental forcing/biological response is essential

Are these records long enough to detect altered phytoplankton communities
(see Henson et al. 2010, Di Lorenzo & Ohman 2013)

Phytoplankton are passive drifters — how does drift influence their environmental
trajectory and hence their response
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We know shifts in phytoplankton community structure propagate through foodwebs so
a mechanistic understanding of environmental forcing/biological response is essential

Are these records long enough to detect altered phytoplankton communities
(see Henson et al. 2010, Di Lorenzo & Ohman 2013)

Phytoplankton are passive drifters — how does drift influence their environmental
trajectory and hence their response

Drift in ocean currents impacts intergenerational
microbial exposure to temperature

'® Martina A. Doblin®" and Erik van Sebille™®

The timescales of global surface-ocean connectivity
Bror F. Jonsson & James R. Watson
Nature Communications 7, Article number: 11239 do0i:10.1038/ncomms11239



Rivero-Calle (2015) employed 3 random forest walk models
To explore the relative importance of properties to
Predicting coccolithophore occurrence
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Permutations of multiple stressors vary with locale

Anthropogenic Drivers
Local Regional
Turbidity= Atmospheric Mutrientsd Temperature’
Pollutants® UV - Ozone Hole* Salinity
Eutrophication® Atmospheric Metals' Sea-level
Atmospheric Pollutants® co,
Invasives" pH*
a,
Mufrientsm
Trace Metals™
Underwater Irradiance™

ond & Hutchins

2012 MEPS



COMMENTARY:
The fledgling multi-stressors Lessons |earnec| from ocedan

community has expertise to help e 1°£ .
shed light on drivers behind the aCId |flcat|0n resea rCh

observed floristic shifts

UIf Riebesell and Jean-Pierre Gattuso
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Another approach to long
Time-series datasets

g 10 km decade™

~40 km decade™!

Climate velocities (Barton et al., 2016)

Assuming 150 day growth season at 0.5 d! growth rate
750 generations of a phytoplankter over this period

Overwintering? Scope for physiological change over 750 generations?



What conditions will the phytoplankton encounter over this period?

Submesoscale
scenario

Levy et al.
(2012)

7,

Simpler
scenario

Abrupt gradient
scenario



FeCycle 11l GEOTRACES process study (Boyd unpublished)
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Boyd et al.
(2013)
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Closely linked with the Emergence Boyd et al. (2016, GCBiology)
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Environmental response strategies in 15 years in the Southern Ocean
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Biological responses to environmental heterogeneity
under future ocean conditions

PHILIPW._BOYD'™, CHRISTOPHER E. CORNWALL'™, ANDREW DAVISONT,

SCOTT C. DONEYY, MARION FOURQUEZ"*, CATRION A L. HURD', IVAN . LIMA®* and
ANDREW MOMIN®K'~

We conclude that the strategies used by biota
to respond to shifts in environmental
heterogeneity may be complex.

They will have to physiologically straddle wide-
ranging timescales in the alteration of ocean
conditions.

For example, the need to adapt to rapidly
rising CO, and also acclimate to environmental
heterogeneity in more slowly changing
properties such as warming.



Conclusions

Regime shifts may be driven by a combination of climate variability and change
Recent time-series studies have reported marked floristic shifts

Powerful statistical approaches have been employed

Candidate mechanisms range from adaptation to ‘shift and shuffle’

To further explore the validity of these candidate mechanisms each

should be recast in terms of environmental variability and its influence on
phytoplankton responses (acclimation/adaptation)

In a changing climate the variance (including more regime shifts?) may be just

as influential as the mean for marine life






Gordon Research Conferences
~ frontiers of science
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Announcing the 2016 Gordon Research Conference on:

July 17-22, 2016
Waterville Valley Resort Waterville Valley, NH
USA
Chair: Philip Boyd
Vice Chair: Gretchen E. Hofmann

There is a growing awareness within the oceanographic and global
environmental change communities that the various effects of a changing
climate on oceanic properties will be both multi-faceted, and occur
simuitaneously. Furthermaore, there is a growing body of evidence that our
ability to predict the biological responses to these dramatic alterations of
the oceanic environment is contingent on understanding the interactive
effects between distinct ocean properties. In the last decade our research
community has primarily focused on the biological effects of changes to
individual ocean properties, such as pH (ocean acidification) or
temperature (sea surface warming). This GRC brings these distinct but
related research threads together by adopting a holistic approach to two
pressing research guestions - "How will ocean biota respond to
fundamental and concurrent alterations of their environment?”, and "How
will their cumulative responses affect ocean productivity, biodiversity, and
hiogeochemistry?”. The aim of this Gordon Research Conference is to
bring together disparate research communities, from experimentalisis to
modelers, who are all tackling aspects of biological responses to ocean
global change. This GRC brings together these diverse research
communities who are addressing this common guestion, in order to
devise a range of approaches to tackle this issue systematically.

Apply now at: http://www.grc.org/programs.aspx?id=15856
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Since ~1850 CE, however, sea surface
temperatures

have increased, accompanied by a likely
decrease in the tradewinds concomitant with
gyre

expansion, as a result of Northern Hemisphere
warming. The resulting increase in
stratification

and decrease in nutrient availability may have
selected for a N2-fixing cyanobacterial
community,

as observed in the instrumental record over

We find that individual

species and entire communities move in space,
or shift, and that

communities internally reassemble, or shuffle.



‘Global Change Biology
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Climate change-related regime shifts have altered spatial
synchrony of plankton dynamics in the North Sea

EMMA J. DEFRIEZ', LAWRENCE W. SHEPPARD?, PHILIP C. REID* *® and
DANIEL C. REUMANZ¢

Working definition: a regime shift is a

relatively abrupt change between contrasting
persistent states in an ecosystem






Biological responses to
environmental fluctuations
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* Taxa from environments characterised by greater heterogeneity
may have greater phenotypic plasticity. Schaum et al. (2013)

e Climate-change models report that environmental heterogeneity
will increase in future decades (IPCC, 2014)

e Climate-change biological manipulation studies that include
environmental fluctuations reveal different responses compared
to climate change treatments (Cornwall et al. 2013)



Marine Ecosystem Response to the Atlantic Multidecadal
Oscillation

Martin Edwards’?*, Gregory Beaugrand?, Pierre Helaouét', Jiirgen Alheit®, Stephen Coombs®

Against the backdrop of warming of the Northern Hemisphere it has recently been acknowledged that North Atlantic
temperature changes undergo considerable variability over multidecadal periods. The leading component of natural lowfrequency
temperature variability has been termed the Atlantic Multidecadal Oscillation (AMO). Presently, correlative studies

on the biological impact of the AMO on marine ecosystems over the duration of a whole AMO cycle (,60 years) is largely

unknown due to the rarity of continuously sustained biological observations at the same time period. To test whether there

is multidecadal cyclic behaviour in biological time-series in the North Atlantic we used one of the world’s longest

continuously sustained marine biological time-series in oceanic waters, long-term fisheries data and historical records over

the last century and beyond. Our findings suggest that the AMO is far from a trivial presence against the backdrop of

continued temperature warming in the North Atlantic and accounts for the second most important macro-trend in North

Atlantic plankton records; responsible for habitat switching (abrupt ecosystem/regime shifts) over multidecadal scales and

influences the fortunes of various fisheries over many centuries.
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PERSPECTIVES
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ECOLOGY

Adrift in an ocean of change

Rising temperatures and ocean acidification drive
changes in phytoplankton communities

By Medke Vgt | evidence i accumulating that phytoplank-

Climabe-relaied plytoplankbon hahitat shifts. Coibred scarming elacimonmicrograph of 1he cdcium crborade shellsof corditophorss. Exhplale is aboul -2 5 pm wide:

In the realm of phytoplankton, the Who
Who s of critieal importance to ecosy
tem functon Different  phytoplankta
groups have evolved varibus plyvsiolgic:
strategles that allow them to thrive in ms
rine environments ranging from freezing
nutrient-rich polar waters to warm, mite
ent-poor subiropical ooean deserts. Thel
extensive functional diversity allows ther
to differentially influence global hioge



Our observations are consistent with the
hypothesis that phytoplankton communities
adapted to the changes in temperature and
irradiance observed over a decade. This hypothesis
should be tested with genomic and

transcriptomic profiling of species from

time-series studies



Southern Ocean phytoplankton turnover in response t
stepwise Antarctic cooling over the past 15
million years

James S. Crampton®?', Rosie D. Cody®“?, Richard Levy?, David Harwood9, Robert McKay®, and Tim R. Naish®

2GNS Scence, Lower Hutt 5040, New Zealand; ®School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington 6140,
New Zealand; “Antarctic Research Centre, Victoria University of Wellington, Wellington 6140, New Zealand; and “Department of Earth and Atmospheric
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Drift in ocean currents impacts intergenerational
microbial exposure to temperature
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Here we show that upper-ocean microbes experience along-trajectory temperature variability
up to 10 °C greater than seasonal fluctuations estimated in a static frame, and that this
variability depends strongly on location. These findings demonstrate that drift in ocean
currents can increase the thermal exposure of microbes and suggests that microbial
populations with broad thermal tolerance will survive transport to distant regions of the
ocean and invade new habitats.






Our findings also suggest that advection has the capacity to influence microbial community
assemblies, such that regions with strong currents and large thermal fluctuations

select for communities with greatest plasticity and evolvability, and communities with
narrow thermal performance are found where ocean currents are weak or along-trajectory
temperature variation is low.

Given that fluctuating environments select for

individual plasticity in microbial lineages, and that physiological
plasticity of ancestors can predict the magnitude of evolutionary
responses of subsequent generations to environmental change
[Schaum CE, Collins S (2014) Proc Biol Soc 281(1793):20141486],
our findings suggest that microbial populations in the sub-Antarctic
(~40°S), North Pacific, and North Atlantic will have the most
capacity to adapt to contemporary ocean warming.
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Abstract:

The accelerating loss of biodiversity and ecosystem services worldwide has accentuated a long-standing debate on the
role of diversity in stabilizing ecological communities and has given rise to a field of research on biodiversity and
ecosystem functioning (BEF). Although broad consensus has been reached regarding the positive BEF relationship, a
number of important challenges remain unanswered. These primarily concern the underlying mechanisms by which
diversity increases resilience and community stability, particularly the relative importance of statistical averaging and
functional complementarity. Our understanding of these mechanisms relies heavily on theoretical and experimental
studies, yet the degree to which theory adequately explains the dynamics and stability of natural ecosystems is largely
unknown, especially in marine ecosystems. Using modelling and a unique 60-year dataset covering multiple trophic levels,
we show that the pronounced multi-decadal variability of the Southern California Current System (SCCS) does not
represent fundamental changes in ecosystem functioning, but a linear response to key environmental drivers channelled
through bottom-up and physical control. Furthermore, we show strong temporal asynchrony between key species or
functional groups within multiple trophic levels caused by opposite responses to these drivers. We argue that functional
complementarity is the primary mechanism reducing community variability and promoting resilience and stability in the
SCCS.
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Abstract

[1] Time series of climate indices and of biomass, abundance, and species number of benthic
macrofauna in the southern North Sea are related to each other to investigate the
predictability of biological time series in presence of biological regime shifts in 1989/1990 and
2001/2002. The results indicate that a smooth biological regime shift occurred in 1989/1990
caused by positive climate feedback mechanisms. In this case, the benthic community
structure remained predictable. In contrast, in 2001/2002 an abrupt biological regime shift
caused by a climate regime shift occurred. Here became the biological time series inherently
unpredictable.



Ocean time-series observations also point to
environmental drivers on oceanic biota

Increases in spatial extent of coccolithophores in Bering
& Barents Sea linked to warming and stratification (Smyth et al, 2004).

Likewise for Subantarctic waters (Cubillos et al. 2009)
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Biological responses to environmental heterogeneity
under future ocean conditions
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Table 1 Metrics cﬂmmnnly used o define the components of
environmental Hme series - such as the annual q,rcl::- of tem-

perature at an ocean site (Karl et al., 2003) that comprise its

environmental heterogeneity

Metric Analogous or inclusive terms
Average state Mean, Median, Mode

Variability Standard deviation, Variance
Magnitude of Range or amplitude, Minimum value,
events Maximum value

Rate of change Abrupiness, Sustained, Progressive,

Duration of events
F’r-e-qu-r:m:il.,r of events

Step-wise

Prolonged, Transient

Periodicty, Intermittency, Stochastic,
Cyelic




Conceptual and experimental approaches
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Environmental control of open-ocean phytoplankton groups: Now and in the future

Philip W. Boyd,%" Robert Strzepek,® Feixue Fuf and David A. Hutchins®

Reviewed conceptual approaches including Margalef’s Mandala,
resource ratio theory, functional traits & emergent biogeography

Compared & contrasted the projections of coupled ocean atmosphere
climate models with results from experimental manipulation studies






Oceanic Regime Shifts Driven by Ocean Acidification and Climate Change

Seminar

May 18, 2016
12:15 PM
Collins Conference Room

Sante fe insttute

Brad deYoung (Memorial University)

Abstract. Oceanic regime shifts are the result of sudden, dramatic and persistent changes in
the state of an ocean ecosystem. Except in some exceptional circumstances, such shifts are
difficult to identify even after they have taken place. | will review some examples to identify
key characteristics of regime shifts and outline a few different types of oceanic regime shifts. |
will talk about how the characteristics of such shifts might change in the future, given climate
change, in particular ocean acidification. Will they become more frequent or more significant?
Is there any likelihood that we will be able to detect them earlier? The scale of anthropogenic
ocean impacts is leading us ever deeper more directly into some form of ecosystem
management. The possible management responses to an oceanic regime shift depend on the
characteristics of the shift and when it is detected. Given an increase in the likelihood of
regime shifts in the coming decades, as | will argue, what are the ocean environmental
policies that we can or should consider to limit their frequency, scale or impact.
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Announcing the 2016 Gordon Research Conference on:

July 17-22, 2016
Waterville Valley Resort Waterville Valley, NH
USA
Chair: Philip Boyd
Vice Chair: Gretchen E. Hofmann

There is a growing awareness within the oceanographic and global
environmental change communities that the various effects of a changing
climate on oceanic properties will be both multi-faceted, and occur
simuitaneously. Furthermaore, there is a growing body of evidence that our
ability to predict the biological responses to these dramatic alterations of
the oceanic environment is contingent on understanding the interactive
effects between distinct ocean properties. In the last decade our research
community has primarily focused on the biological effects of changes to
individual ocean properties, such as pH (ocean acidification) or
temperature (sea surface warming). This GRC brings these distinct but
related research threads together by adopting a holistic approach to two
pressing research guestions - "How will ocean biota respond to
fundamental and concurrent alterations of their environment?”, and "How
will their cumulative responses affect ocean productivity, biodiversity, and
hiogeochemistry?”. The aim of this Gordon Research Conference is to
bring together disparate research communities, from experimentalisis to
modelers, who are all tackling aspects of biological responses to ocean
global change. This GRC brings together these diverse research
communities who are addressing this common guestion, in order to
devise a range of approaches to tackle this issue systematically.

Apply now at: http://www.grc.org/programs.aspx?id=15856




There are pronounced regional differences in phytoplankton physiology
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