

Carbon uptake and feedbacks in CMIP

Matthew C. Long

Climate and Global Dynamics Laboratory National Center for Atmospheric Research

Scott C. Doney

Marine Chemistry & Geochemistry Woods Hole Oceanographic Institution

July 2016

OCB Summer Workshop

- Characterize CMIP5 simulations of the carbon cycle:
 - carbon-concentration (β) and carbon-climate (γ) feedbacks;
 - separation of impacts on natural and anthropogenic CO₂;
 - prolonged timescale of ocean response to warming.
- How robust are the CMIP simulations?
 - Anthropogenic CO₂: circulation biases;
 - Natural CO₂: representing the biological pump.
- Emerging opportunities:
 - Decadal prediction experiments.

The Earth system modeling framework

Earth System Models simulate a fully-coupled global carbon cycle

Emissions-forced prognostic carbon budget

4

Linear decomposition of cumulative ocean carbon inventory

$$\Delta C^{ocn} = \int \phi_{as} dt = \int_{V} (C_t^{ocn} - C_0^{ocn}) dV$$
$$= \beta \Delta C^{atm} + \gamma \Delta T$$
$$= \Delta C^{\beta} + \Delta C^{\gamma}$$

- $\Delta C^{ocn} = \Delta C^{\beta} + \Delta C^{\gamma}_{nat} + \Delta C^{\gamma}_{ant}$ (PgC/ppm) [FULL CTRL] [T1850 CTRL] [C1850 CTRL] (residual) γ : carbon-climate feedback
- β : carbon-carbon feedback
 - (PgC/K)

CMIP5 Idealized simulations

Ocean uptake under $1\% y^{-1}$ ramping CO₂

Carbon inventory changes

Processes controlling CO₂ uptake

$$\frac{\partial \mathsf{C}}{\partial_t} + (\mathbf{u} + \mathbf{u}^*) \cdot \nabla \mathsf{C} - \nabla \cdot (\mathcal{K} \nabla \mathsf{C}) = J_{\mathsf{C}}$$

Globally-integrated vertical carbon fluxes: natural CO2

positive := down

Globally-integrated vertical carbon fluxes: anthropogenic CO2

Time-integrated air-to-sea CO₂ flux components

positive := down

Changes in forcing under RCP8.5

CMIP5 models: area-weighted surface properties SH extratropics (40-60°S)

Ito et al. 2015, GRL

Complex response to transient forcing

Southern Ocean carbon inventory under RCP8.5 and idealized forcing

All forcing

2000

2000

time

CMIP5 range

All forcina

Therma

CMIP5 range

Thermal

2100

Wind

2100

2050

Feedback parameters: CMIP5 versus C4MIP

Feedbacks grow as warming continues: extended RCP8.5 simulations

Feedbacks grow as warming continues

Weak transient tracer uptake: Cant and CFC

Biases relative to GLODAP

Long et al. 2013

Mixed layers depth biases in hindcast runs: Missing physics?

Seasonal handoff: boundary layer to isopycnal mixing

Vertical fluxes in ACC

CMIP5 model skill metrics

Seasonal cycle (phase & amplitude)

CMIP5: Changes in NPP and export production

• Large spread in simulated NPP.

Fu et al. 2015

CMIP5: Changes in NPP and export production

- Less NPP decline in models (CESM, GFDL) simulating changes in phytoplankton community (diatoms→small phytoplankton);
- Changes in export production somewhat more robust: constrained by physically-mediate nutrient supply.

Fu et al. 2015

CMIP5 model skill metrics: Seasonal cycle in air-sea CO₂ flux

Anav et al. 2015

FeMIP: Large intermodel differences in iron cycling

Model	Fe Sources (Gmol yr ⁻¹)							
	Dust	Sediment	Hydrothermal	Rivers	Total	Fe Inventory (×10 ¹¹ mol)	Average Fe (nmoles L ⁻¹)	Residence Time (years)
BEC	21.9	84.6	17.7	0.34	124.5	10.1	0.74	8.1
BFM	1.4	0	0	0.06	1.4	8.8	0.65	626.3
BLING	3.3	9.1	0	0	12.4	5.3	0.37	42.4
COBALT	32.5	155	0	0	182.5	6.8	0.50	3.7
GENIE	1.8	0	0	0	1.8	10.1	0.48	560.0
MEDUSA1	2.7	0	0	0	2.7	6.3	0.46	232.0
MEDUSA2	3.4	2.9	0	0	6.8	4.8	0.35	69.9
MITecco	3.5	104	0	0	107.5	8.8	0.65	8.2
MITigsm	1.4	194	0	0	195.4	9.0	0.66	4.6
PISCES1	32.7	26.6	11.3	2.5	71.0	8.1	0.59	11.5
PISCES2	32.7	26.6	11.3	2.5	71.0	11.2	0.81	15.7
REcoM	3.7	0.6	0	0	4.3	12.5	0.73	291.6
TOPAZ	13.8	74.8	0	0	88.6	6.8	0.50	7.6
				Mean	66.9	8.3	0.58	144.7
				Standard deviation	67.1	2.2	0.14	175.8

- Total Fe inputs vary widely;
- Mean oceanic Fe concentrations are similar;
- Scavenging compensates: Fe residence time varies widely.

Tagliabue et al. 2015

Summary

- CMIP5 simulations show:
 - C_{ant} transfer into the ocean interior is dominated by resolved advection (mid-latitudes) and diapycnal mixing (high-latitudes); warming-induced stratification weakens these fluxes.
 - Stratification limits C_{nat} outgassing, but also curtails surface nutrient supply, thereby weakening the biological pump (reduced efficiency) and yielding net release of natural carbon.
 - Southern Ocean shows particularly intricate behavior.
- How robust are the CMIP simulations?
 - Southern Ocean mixed layer depths and overturning circulation remain problematic.
 - Wide divergence in model representations of the biological pump.
- Emerging opportunities:
 - Initialized prediction experiments represent interesting framework for model-observation fusion.

Eyring et al. 2016

Questions?

Matthew Long Climate & Global Dynamics Laboratory National Center for Atmospheric Research mclong@ucar.edu

Meehl et al. 2009

Dominant timescales of intrinsic variability

Variance-weighted mean frequency (period)

$$T_x = \sum_k V(f_k, x) / \sum_k f_k V(f_k, x)$$

Skillful forecasts of upper ocean heat content on decadal timescale

Heat content anomaly, N. Atlantic Subpolar gyre (z > -275 m)

30

Biogeochemical predictions on multi-annual timescales: possible?

Internal variability: physical system

El Niño-Southern Oscillation

Period (years)

1.5

- OBS (1900-2010)

50 10

80

Gent et al. 2011

Natural variability can reinforce or oppose trends

CESM simulation of dissolved oxygen at Station P ($\sigma_{\theta} = 26.5$)

Long et al. 2016

Natural variability can reinforce or oppose trends

CESM simulation of dissolved oxygen at Station P ($\sigma_{\theta} = 26.5$)

Long et al. 2016

Natural variability can reinforce or oppose trends

CESM simulation of dissolved oxygen at Station P ($\sigma_{\theta} = 26.5$)

Mechanisms driving changes in carbon storage

Southern Ocean box model

- Weaker lower cell (Ψ_L): ventilation age (τ) increases; stronger upper cell (Ψ_U) partially compensates.
- Increased age (τ): greater C_{reg} storage; decrease in respiration rates (R) weakly opposes.

CMIP6 Overview

DECK := Diagnostic, Evaluation and Characterization of Klima

Eyring et al. 2016

Continuous and distributed organization

- Common experiments:
 - DECK
 - 1. AMIP historical (1979-2014)
 - 2. Pre-industrial control
 - 3. 1%/yr CO₂ increase
 - 4. Abrupt $4 \times CO_2$
 - CMIP6 historical simulation
 - 5. 1850-2014 under CMIP6 forcings
- CMIP-Endorsed modeling intercomparison projects

CMIP6 Endorsed MIPs

1	AerChemMIP	Aerosols and Chemistry Model Intercomparison Project
2	C4MIP	Coupled Climate Carbon Cycle Model Intercomparison Project
3	CFMIP	Cloud Feedback Model Intercomparison Project
4	DAMIP	Detection and Attribution Model Intercomparison Project
5	DCPP	Decadal Climate Prediction Project
6	FAFMIP	Flux-Anomaly-Forced Model Intercomparison Project
7	GeoMIP	Geoengineering Model Intercomparison Project
8	GMMIP	Global Monsoons Model Intercomparison Project
9	HighResMIP	High Resolution Model Intercomparison Project
10	ISMIP6	Ice Sheet Model Intercomparison Project for CMIP6
11	LS3MIP	Land Surface, Snow and Soil Moisture
12	LUMIP	Land-Use Model Intercomparison Project
13	OMIP	Ocean Model Intercomparison Project
14	PMIP	Palaeoclimate Modelling Intercomparison Project
15	RFMIP	Radiative Forcing Model Intercomparison Project
16	ScenarioMIP	Scenario Model Intercomparison Project
17	VoIMIP	Volcanic Forcings Model Intercomparison Project
18	CORDEX*	Coordinated Regional Climate Downscaling Experiment
19	DynVar*	Dynamics and Variability of the Stratosphere-Troposphere System
20	SIMIP*	Sea-Ice Model Intercomparison Project
21	VIACS AB*	VIACS Advisory Board for CMIP6

* "Diagnostic MIPs"