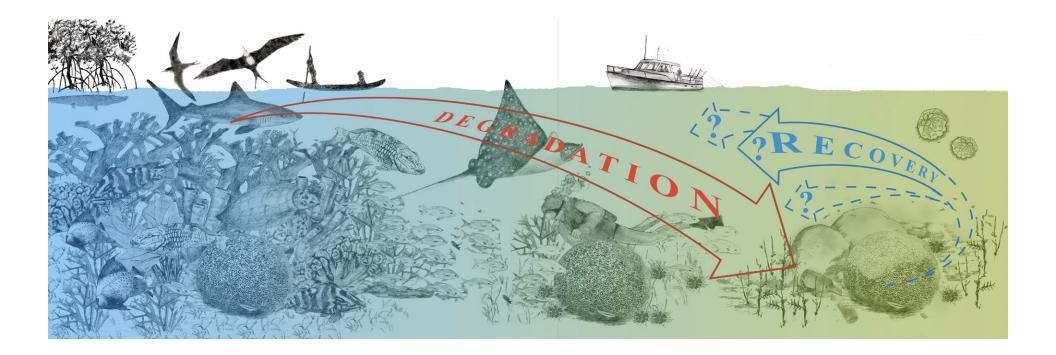
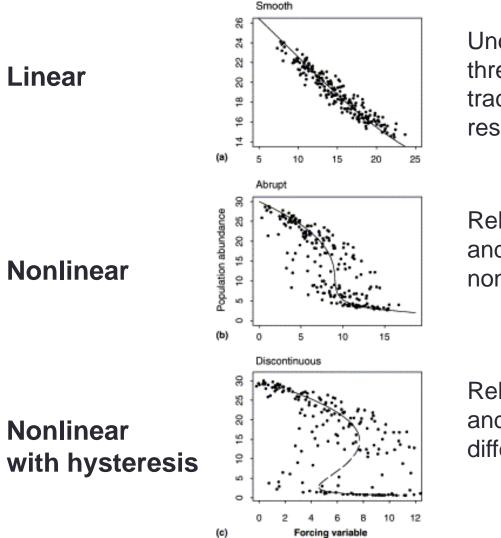
IDENTIFYING NONLINEARITIES, THRESHOLDS, AND INDICATORS OF MARINE ECOSYSTEM SHIFTS

Mary Hunsicker NOAA Fisheries Northwest Fisheries Science Center

> 2016 OCB Workshop July 28, 2016

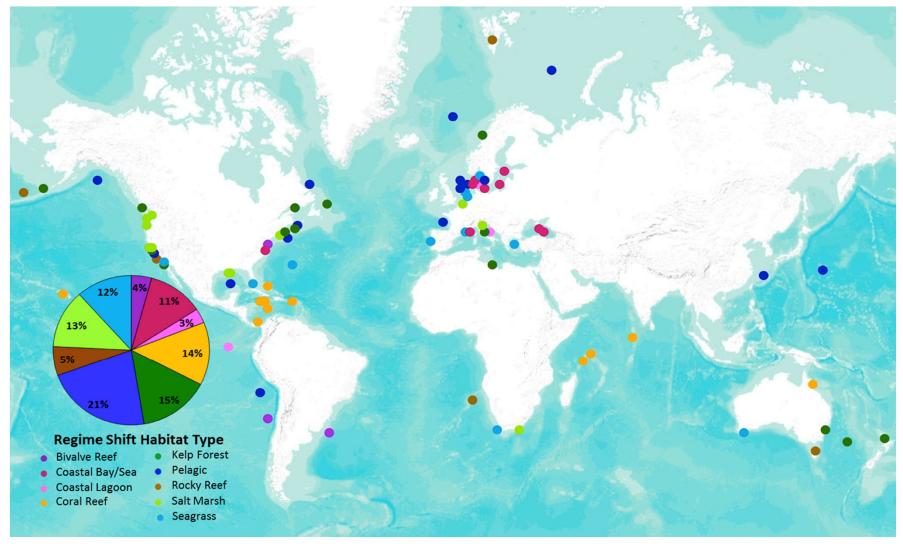




Ocean Tipping Points

When incremental changes in human use or environmental conditions can result in large, and sometimes abrupt, changes in ecosystem structure, function, and benefits to people

Tipping points in marine ecosystems


Underlying driver exhibits threshold behavior that is tracked by the ecosystem response

Relationship between driver and response variable is nonlinear

Relationship between driver and response variable is different before and after shift

Collie et al. 2004 Progress in Oceanography

A wide range of marine habitats across the globe have experienced ecosystem shifts from the intertidal to the open ocean.

Kappel et al. in prep.

A wide range of marine habitats across the globe have experienced ecosystem shifts from the intertidal to the open ocean.

REPORT

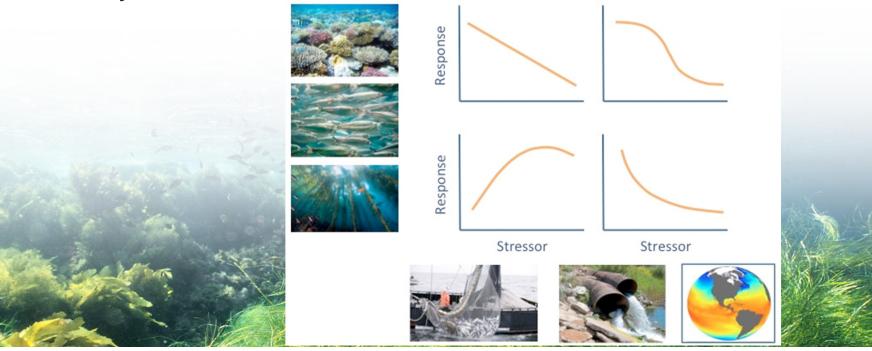
Climate-driven regime shift of a temperate marine ecosystem

Thomas Wernberg^{1,*,†}, Scott Bennett^{1,2,3,†}, Russell C. Babcock^{1,4}, Thibaut de Bettignies^{1,5}, Katherine Cure^{1,6}, Martial Depczynski⁶, Francois Dufois⁷, Jane Fromont⁸, Christopher J. Fulton⁹, Renae K. Hovey¹, Euan S. Harvey², Thomas H. Holmes^{1,10}, Gary A. Kendrick¹, Ben Radford^{6,11}, Julia Santana-Garcon^{1,2,3}, Benjamin J. Saunders², Dan A. Smale^{1,11}, Mads S. Thomsen^{1,12}, Chenae A. Tuckett¹, Fernando Tuya¹³, Mathew A. Vanderklift⁷, Shaun Wilson^{1,10}

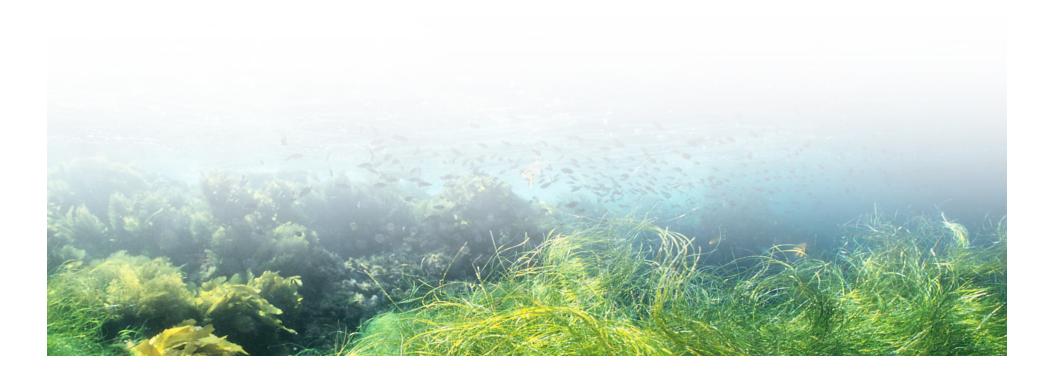
Ocean Tipping Points Project Goals

- Improve knowledge and understanding of ocean tipping points, their potential impacts, and their relevance to management
- Co-develop and disseminate a toolbox of approaches for management of ecosystems prone to tipping points

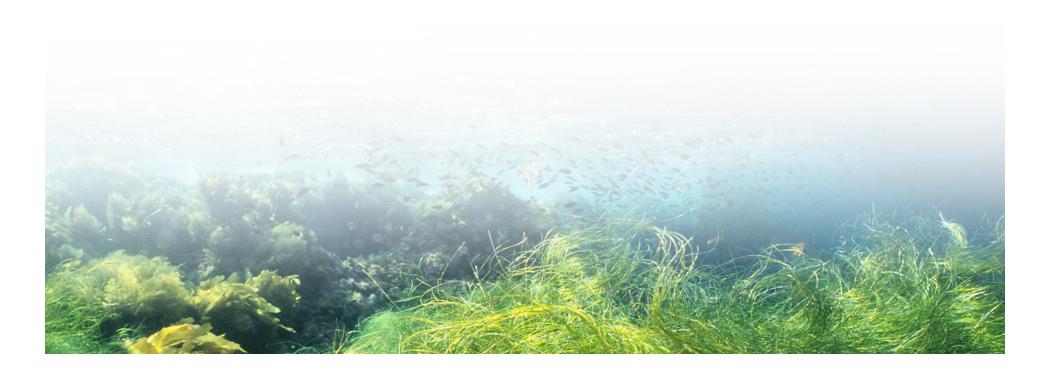
Ocean Tipping Points Project Goals


- Improve knowledge and understanding of ocean tipping points, their potential impacts, and their relevance to management
- Co-develop and disseminate a toolbox of approaches for management of ecosystems prone to tipping points

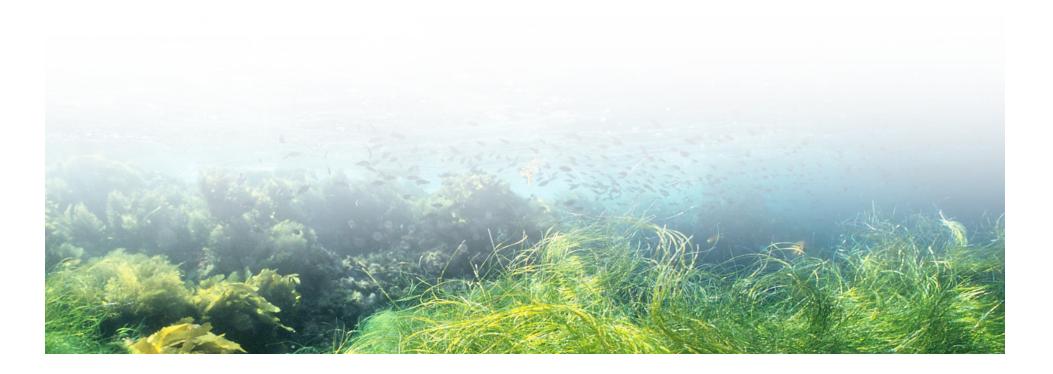
Identify the prevalence of strong nonlinearities, develop a framework to identify ecological thresholds, and test the utility of early warning indicators of abrupt change


Characterizing driver-response variables

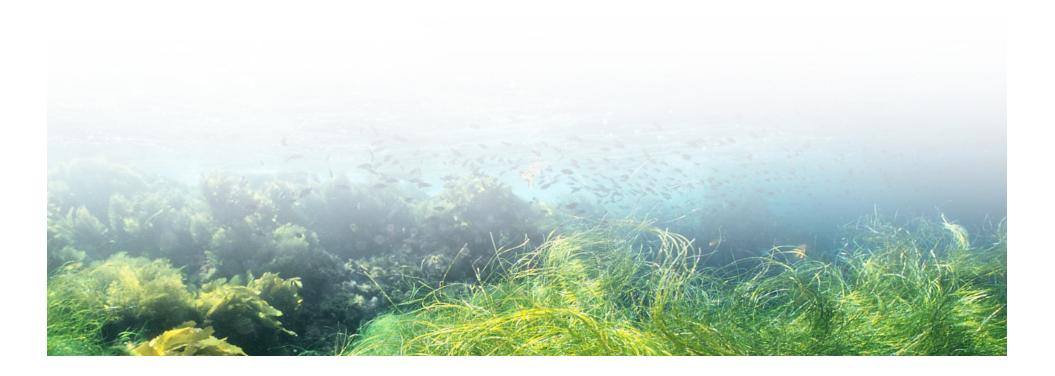
- To better understand the relationships between single stressors and ecosystem components
- To identify when nonlinearities and threshold responses are likely to exist


Motivation

• Default assumption of linearity


Motivation

- Default assumption of linearity
- When and where multiple stressors interact


Motivation

- Default assumption of linearity
- When and where multiple stressors interact
- Reference points or safe zones for management

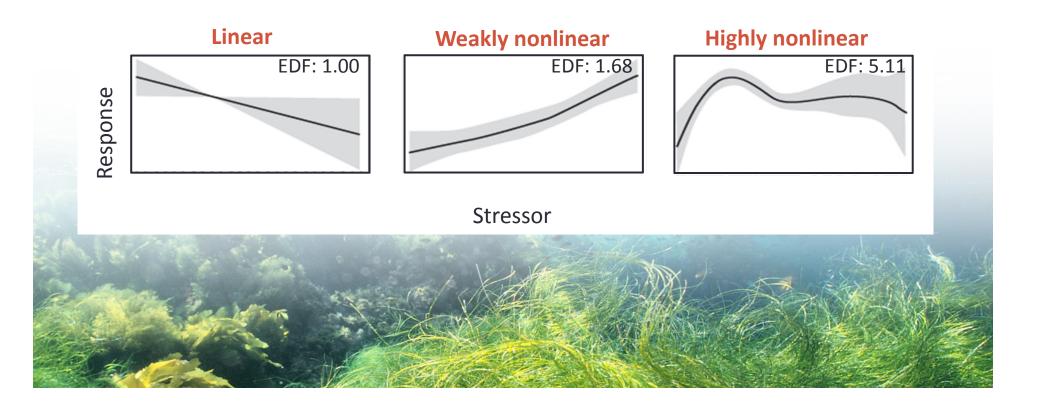
Approach

1) Literature search

Approach

1) Literature search

2) Selection criteria


- Field study in pelagic marine ecosystem
- Statistical analysis (regression, correlation) used to identify the relationship between stressor and response
- Sign. relationships identified by p-value and model selection
- Extract data from paper
- 75 papers; 728 relationships

Approach

1) Literature search

2) Selection criteria

3) Published or derived effective degrees of freedom (EDF) from GAMs are a measure of degree of nonlinearity

Outcome of literature search

Driver / Stressor	Examples of metrics	
Climate	- Temperature - Large-scale climate pattern - Salinity	
Exploitation	 Fishing effort Catch/landings Fishing mortality 	
Pollution	- Nutrient loading - Oxygen - Water clarity	Metric
Food web	 Predator/prey biomass, abundance Primary production, nutrients Density dependence 	

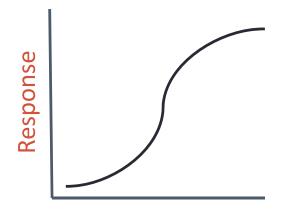
Outcome of literature search

Ecological Responses

Growth

Survival

Reproductive success


Recruitment

Species occurrence

Species biomass and abundance

Species richness

Community composition and diversity

Outcome of literature search

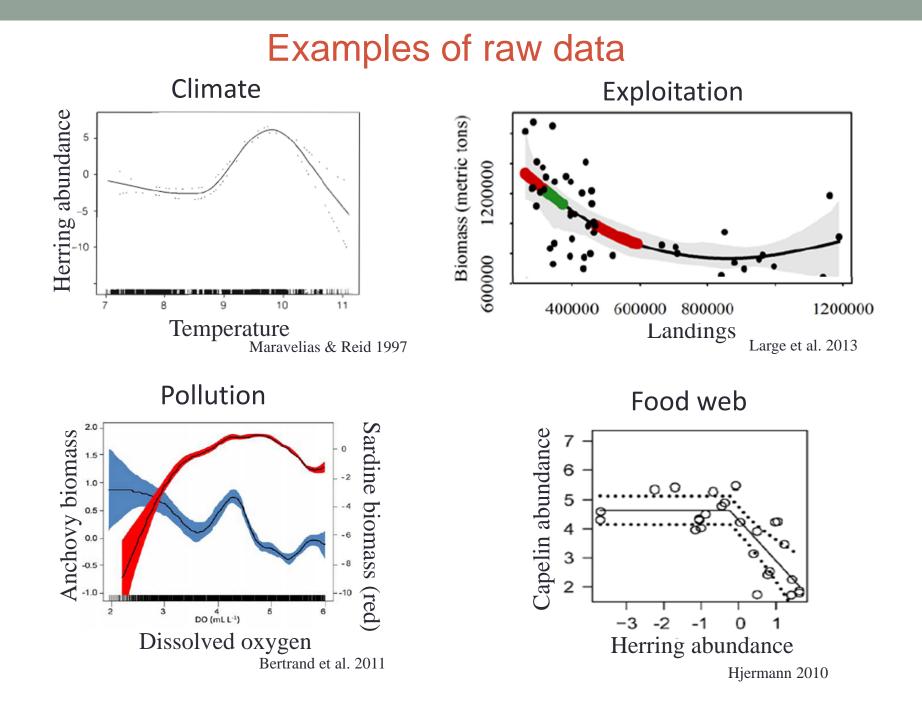
Ecological Responses

Growth

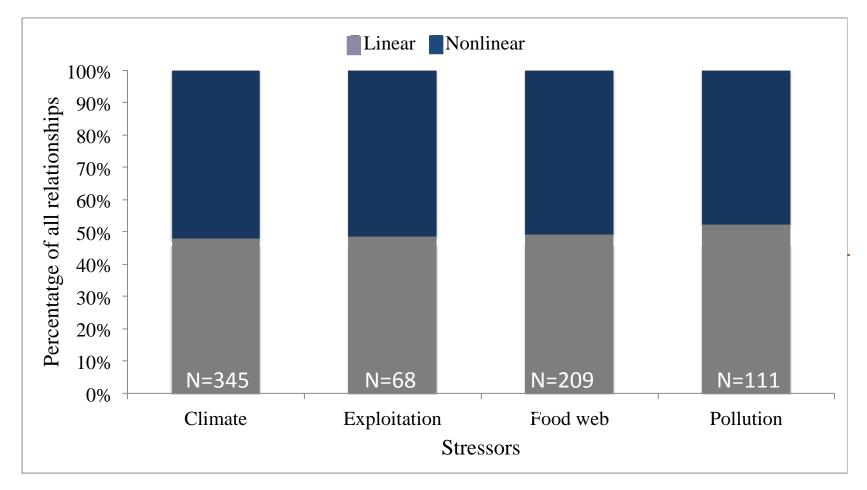
Survival

Reproductive success

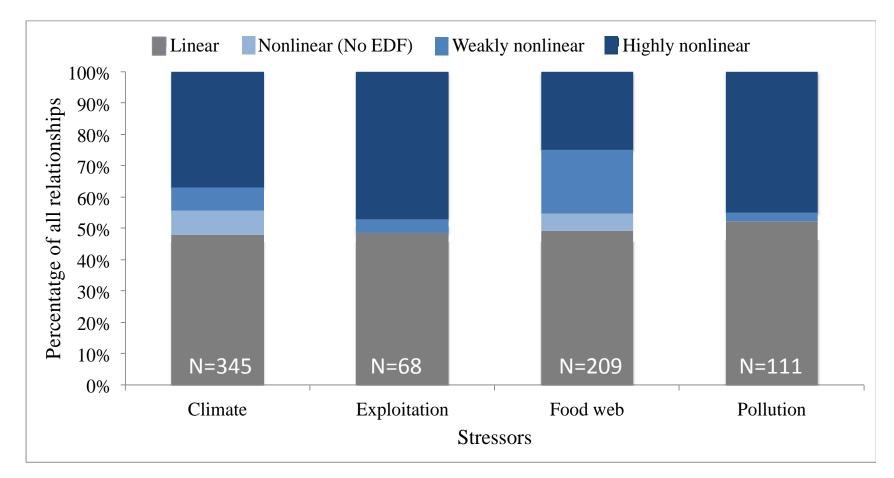
Recruitment


Species occurrence

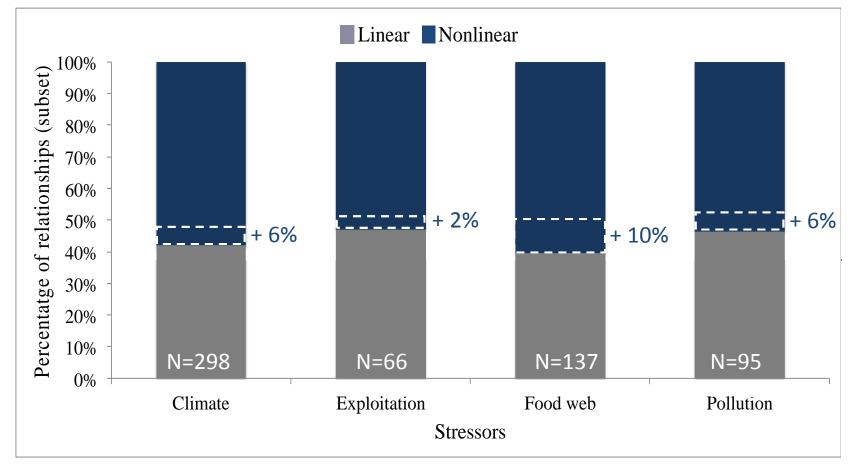
Species biomass and abundance


Species richness

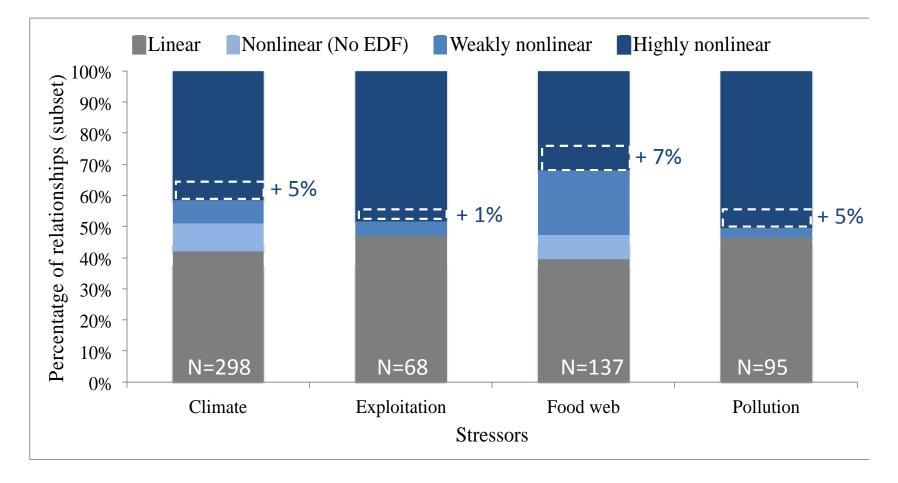
Community composition and diversity



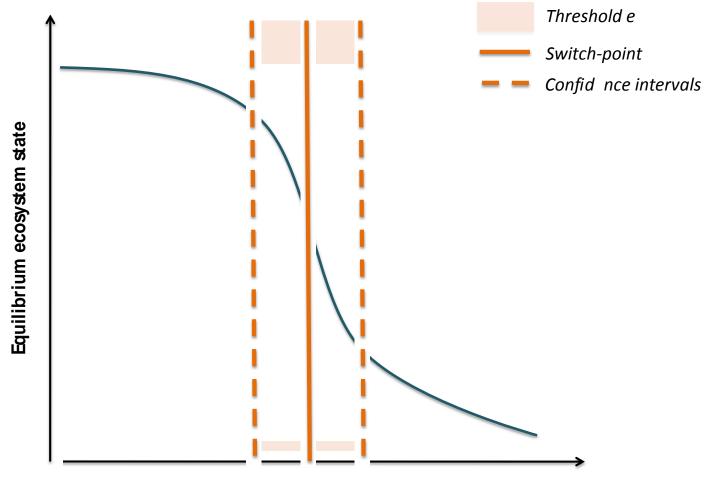
Equal evidence for linear and nonlinear relationships


Hunsicker et al. 2016

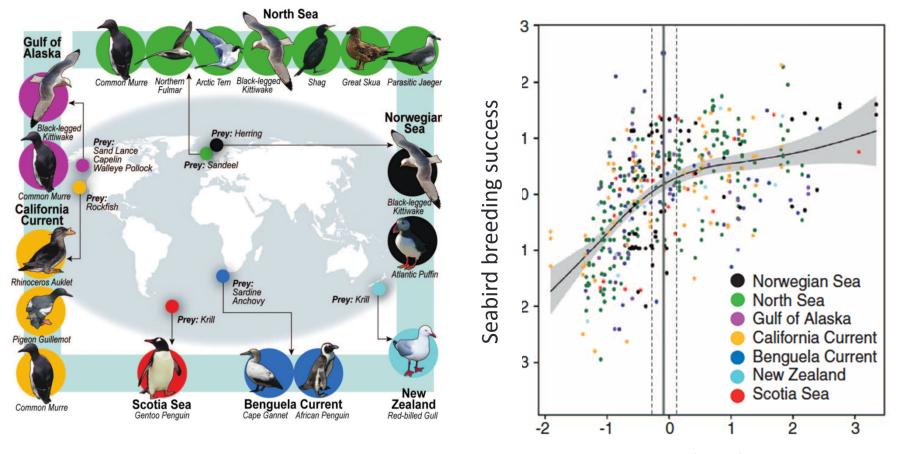
Highly nonlinear relationships are common


And thus may have detectable thresholds that could inform target-setting Hunsicker et al. 2016

Greater % of nonlinearities in robust set of papers


Hunsicker et al. 2016

Also, greater % of highly nonlinear relationships

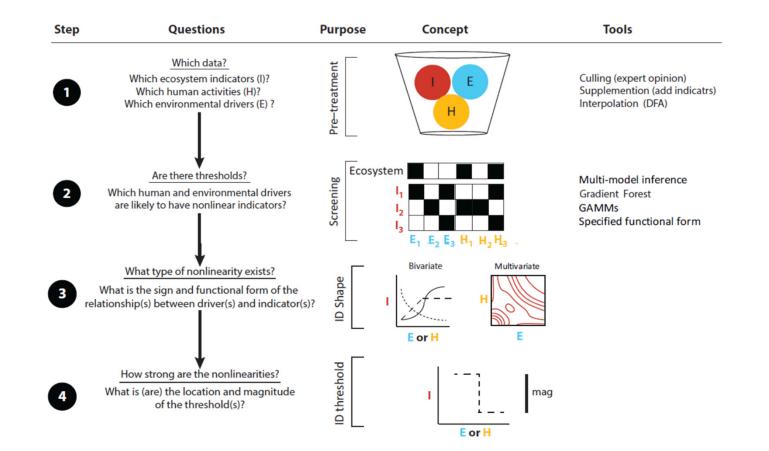

Hunsicker et al. 2016

What are the ecosystem thresholds that can inform target-setting?

Biophysical or anthropogenic driver

Threshold effect of prey abundance on seabird breeding success

Prey abundance


Cury et al. 2011

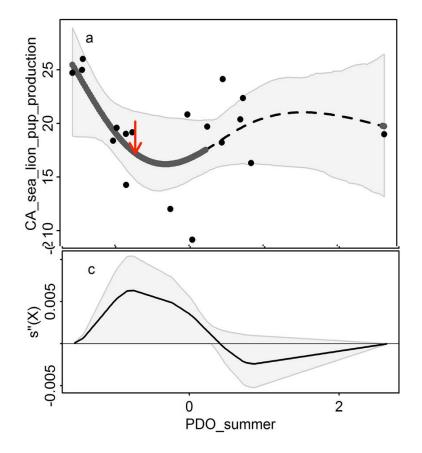
Challenges in our study

- Thresholds are more often identified in ecological timeseries data than stressor-response relationships
- Only 8 papers quantified thresholds in single stressor relationships
- Precluded us from making generalizations about where thresholds are likely to exist

Ecosystem Thresholds

Generalizable framework for identifying thresholds

Samhouri et al. In prep

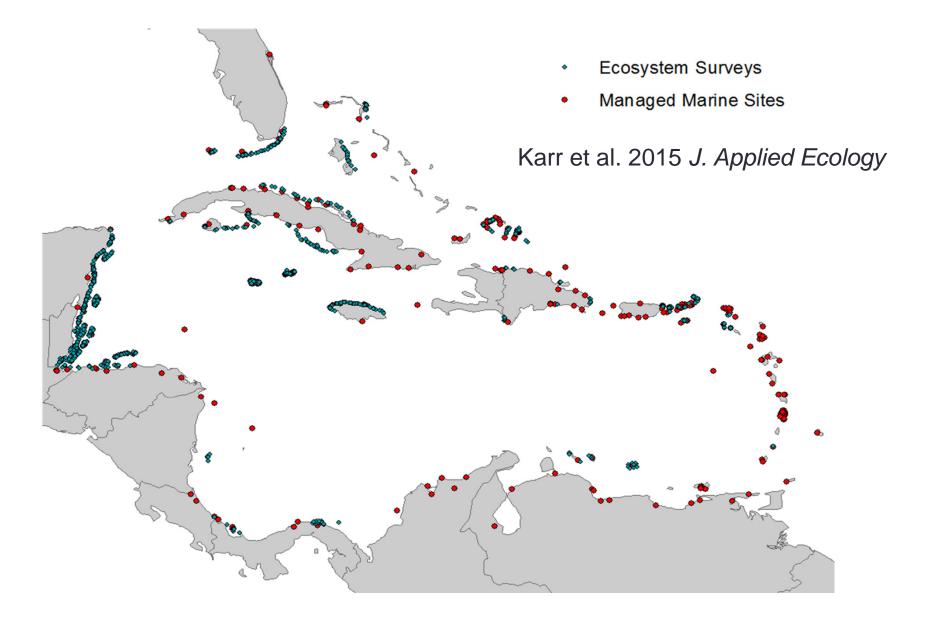

 Identify ecosystem thresholds for environmental drivers and human activities in the California Current ecosystem

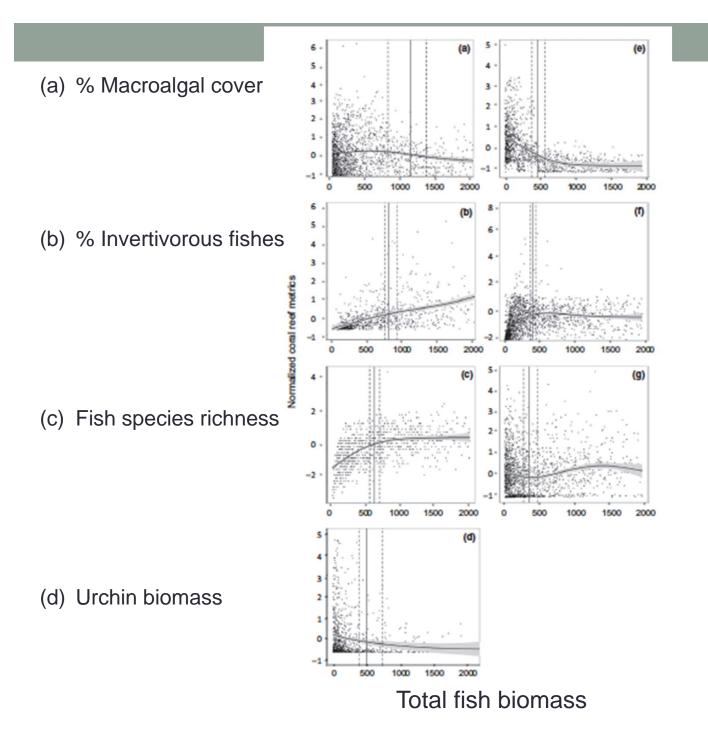
Ecological Integrity Indicators:

Northern copepod anomaly, groundfish mean TL and diversity, sea lion pup production and growth, scavenger biomass

Human Activities: Pollution, dredging, fishery removals, habitat modification, nutrient inputs, etc.

Environmental Drivers: PDO, NPGO



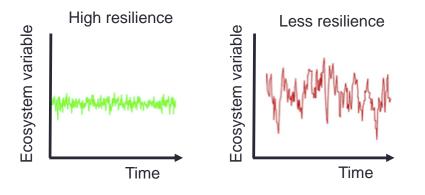

Leading indicators of ecosystem shifts

- Sudden transitions can have large impacts on ecosystem services
- Early warning signs provide ability to anticipate change and mitigate ecological and economic impacts

Leading indicators of Caribbean tipping points

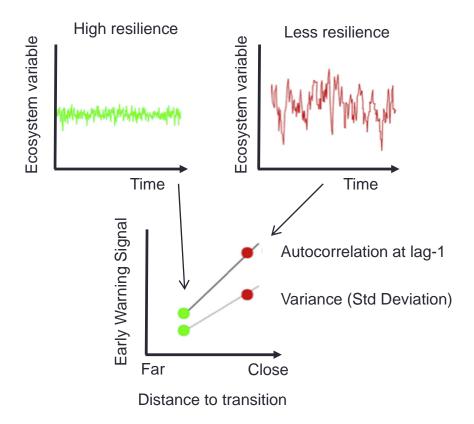
(e) Ratio of macroalgal to Coral cover

(f) % Herbivorous fishes


(g) % Coral cover

Karr et al. 2015

Generic early warning signals

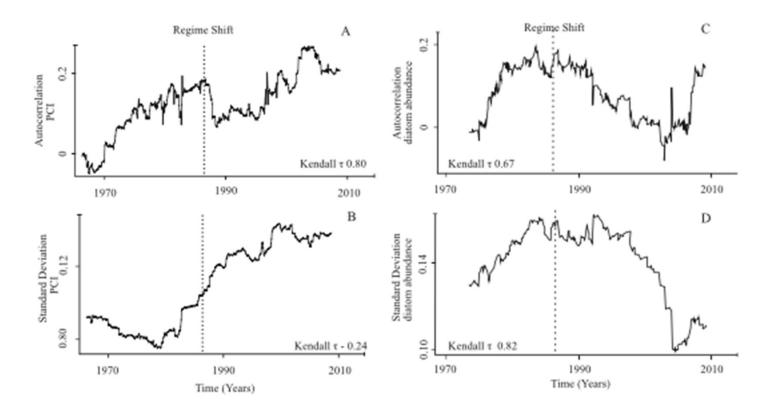

- Metric-based indicators of ecosystem instability based on the complex systems theory of critical transitions and alternate stable states.
- 'Critical slowing down" in population recovery from perturbations as resilience declines and a critical transition approaches

Rising variance and rising autocorrelation are potentially a signal of an approaching shift

From Wouters et al. 2015

Rising variance and rising autocorrelation are potentially a signal of an approaching shift

From Wouters et al. 2015


Generic early warning signals

- Metric-based indicators of ecosystem instability based on the complex systems theory of critical transitions and alternate stable states.
- 'Critical slowing down" in population recovery from perturbations as resilience declines and a critical transition approaches

 Past work indicates they could be useful management tool, but their utility only recently assessed in marine ecosystems

Empirical examples

Rise in temporal variability (SD and autocorrelation) prior to regime shift in the North Sea

From Wouters et al. 2015

Empirical examples

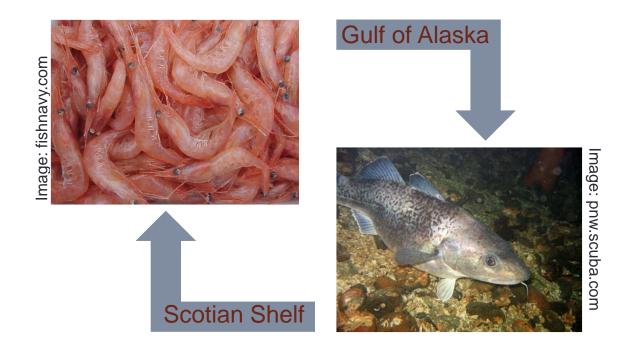

Rising spatial variability in catches of crustaceans up to 4 years prior to collapse (Litzow et al. 2013)

Image: www.hcn.org

Empirical examples

Rising spatial variability in cod:prey abundance ratios accompanying the reorganization of two continental shelf ecosystems (Litzow et al. 2008)

Empirical examples

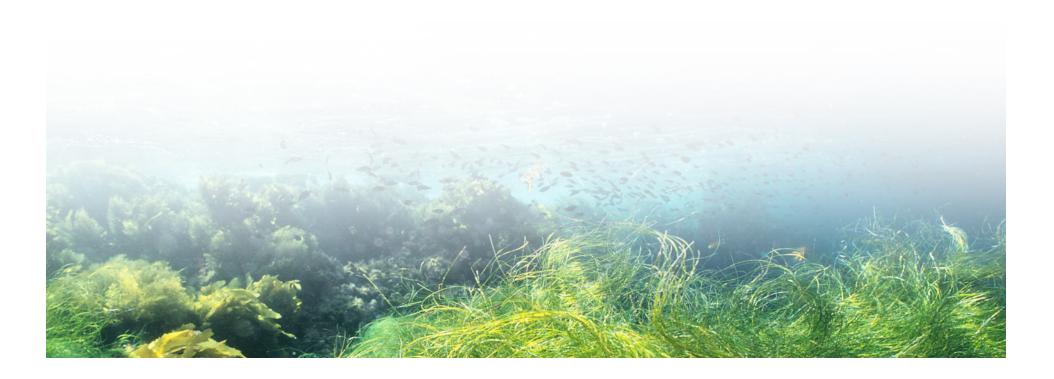
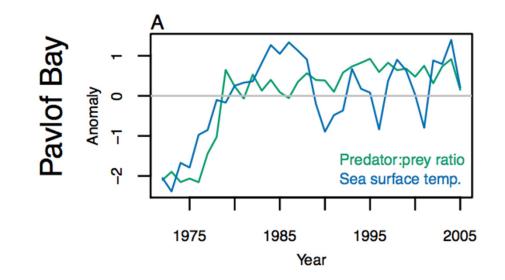

Rise in variability in Arctic sea ice extent prior to acceleration in loss rate of sea ice (Carstensen and Weydmann 2012)

Image: www.climatecnentral.org

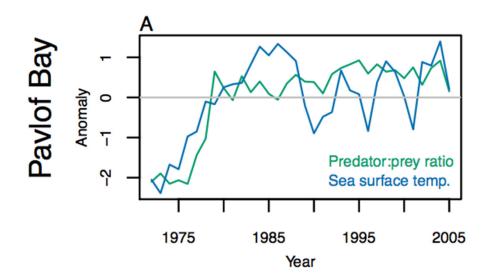
Why do we see mixed results?

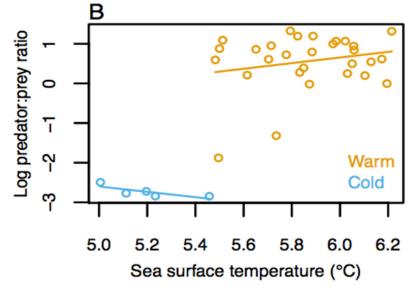

 Meta-analysis to identify the factors distinguishing successful and unsuccessful applications of EWS in field studies (published studies and new analysis)

Why do we see mixed results?

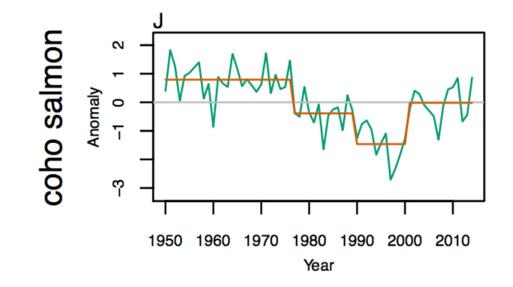
- Meta-analysis to identify the factors distinguishing successful and unsuccessful applications of EWS in field studies (published studies and new analysis)
- Analysis demonstrating nonlinearity in ecosystem dynamics are more likely to support theoretical EWS predictions than studies with linear or undetermined dynamics

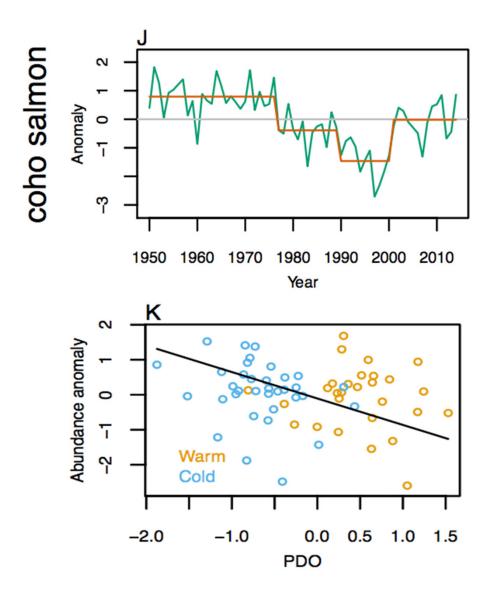
Example: *successful* application of EWS





Example: *successful* application of EWS





Example: unsuccessful application of EWS

Example: unsuccessful application of EWS

Next steps

 Testing for nonlinear dynamics or signs of hysteresis is a key step for improving field studies of EWS and hastening the testing and application of this promising idea

 Provide more tests of EWS in the California Current, Gulf of Alaska and Eastern Bering Sea

Summary

- Nonlinearities are common in open ocean ecosystems
- Where these nonlinearities do exist, they tend to be strongly nonlinear and thus may have detectable thresholds
- Nonlinearities may be systematically underestimated
- EWS are promising, but need more tests in ocean systems
- Might dramatically improve our ability to manage nonlinear ecological change

Acknowledgements

NCEAS / UCSB

Carrie Kappel Ben Halpern Kim Selkoe Courtney Scarborough Alisan Armhein

Stanford/COS

Rebecca Martone Lindley Mease

EDF

Rod Fujita Kendra Karr

NOAA

Kelly Andrews Elliot Hazen Chris Harvey Shannon Henessey Kirstin Holsman Pete Lawson (NOAA) Kristin Marshall (UW) Sam McClatchie Bill Peterson Adrian Stier (UW) Jamie Tam Stephanie Zador

UMASS

Gavin Fay

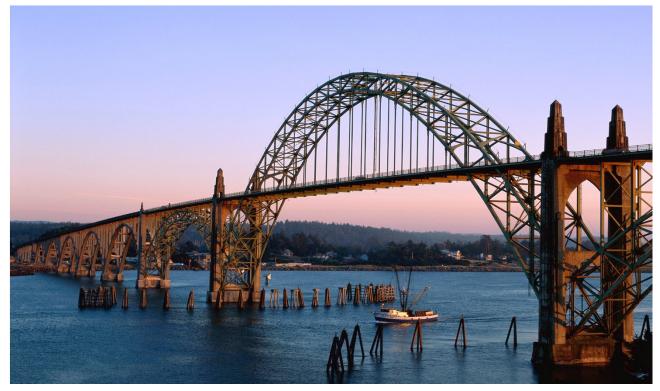
ICES Scott Large

OSU/CIMRS Jennifer Fisher

Farallon Institute Mike Litzow

http://www.oceantippingpoints.org

Ocean Tipping Points Project Overview


Highlighting Stories of Management In Practice

News from the Ocean Tipping Points Team

Thank you!

Google images

Mary.Hunsicker@noaa.gov

Kelly et al. (2014) reviewed management measures implemented in ecological systems that have thresholds. Successful attributes?

They found that...

• Threshold management works. More explicit use of thresholds in management is strongly associated with better environmental outcomes.

• **Responsive monitoring is key**. Good outcomes are also associated with routine monitoring requirements in both retrospective and prospective cases.

• Scale matters. Threshold-based systems with smaller geographic areas are more likely to have good management outcomes.

Kelly, Erickson, Mease, Battista, Kittinger, Fujita, 2014. Phil Trans Royal Soc. B.

Social-ecological observation	Management principle
1. Tipping points are common.	 In the absence of evidence to the contrary, assume nonlinearity.
Intense human use may cause a tipping point by radically altering ecological structure and function.	2. Address stressor intensity and interactive, cross-scale effects of human uses to avoid tipping points.
 Early-warning indicators of tipping points enable proactive responses. 	Work toward identifying and monitoring leading indicators of tipping points.
 Crossing a tipping point may redistribute ecosystem benefits. 	Work to make transparent the effects of tipping points on benefits, burdens, and preferences.
Tipping points change the balance between costs of action and inaction.	5. Tipping points warrant increased precaution.
 6. Thresholds can guide target-setting for management. 7. Tiered management can reduce monitoring costs while 	6. Tie management targets to ecosystem thresholds.7. Increase monitoring and intervention as risk of a tipping
benefits.5. Tipping points change the balance between costs of action and inaction.6. Thresholds can guide target-setting for management.	benefits, burdens, and preferences.5. Tipping points warrant increased precaution.6. Tie management targets to ecosystem thresholds.

Table 3. Summary of principles for managing ecosystems prone to tipping points.

Biophysical or Management Attribute	Our Definition
Discrete/ bounded system	The resource system is discrete and bounded (e.g., an estuary vs. the population range of the Bluefin tuna)
Size	The size of the resource system, reported in square kilometers (log transformed for analysis).
Quantitative Threshold Defined	A quantitative threshold has been enumerated/identified that defines the point at which nonlinear change in the resource system occurs.
Managing Primary Stressor	The manager of the resource system controls the primary driver of threshold change ("x"), an indirect variable that influences the threshold relationship ("z"), or both.
Cost-Benefit Analysis	A cost-benefit analysis that evaluates the consequences of management action vs. inaction has been used. Any documented quantification of monetary costs and benefits of management action qualified as a cost-benefit analysis.
Leading Indicators Available	An environmental indicator exists which could be used to identify ahead of time when a management action should be taken in order to avoid or recover from a threshold change. Leading indicators are surrogates for some larger ecological state or process that is undergoing the nonlinear shift. Often indicators are easier or more reliably monitored than the larger ecological state or process. Primary system variables involved in the threshold relationship (i.e., the driver of the change or the variable changing) do not qualify as leading indicators.
Model Type	If a model exists that describes the system and identifies where the threshold occurs, is it quantitative (capturing relationships mathematically) or qualitative (conceptually relating system features)?
Degree of Threshold- based Management: "Threshold-based management"	1: Managers have identified a quantitative ecological threshold, which they use to set targets and manage threshold variables; 2: Managers have a qualitative idea of the ecological threshold, which they use to set narrative objectives without the use of numerical targets; 3: Managers are unaware of, or ignore, the ecological threshold, but their management actions do impact the threshold relationship; 4: Managers are unaware of, or ignore, the threshold relationship.
Management Duration	The time, in years, between the first set of management actions and the most recent report on the state of the ecosystem (i.e., the point at which the authors determined the outcome score).
Number of Managing Entities	The number of entities that are involved in the management of the resource system.
Jurisdiction over Key Stressors	The managers of the resource system have jurisdiction over all of the sectors/drivers that influence the threshold relationship.
Adaptive Management	The operational management rules require iterative updating of plans and targets to incorporate new information and changing environmental variables.
Hierarchical Level of Governance	The governance level of the primary managing entity. 1: local (e.g., municipality); 2: state; 3: national; 4: international (e.g., international commissions).
Notable NGO Presence	A Non-Governmental Organization was/is involved in motivating, influencing, or creating accountability for management of the resource system.
Routine Monitoring Requirement	The management of the resource system includes routine monitoring of an environmental variable on a time scale relevant to the ecological threshold.
Larger Legal Framework Present	A written, binding agreement that focuses on the relevant threshold exists. This agreement is separate from any management-level plans or strategy documents, and may be a treaty, regulation, or statute.
Human Development Index (HDI)	The Human Development Status of the nation in which the resource system is located. If the system spans multiple nations, an average was taken.
Binding Requirements	The legal framework (written, binding agreement) includes consequences if managers violate the agreement.

Box 1 The terms describing nonlinear theory and early warning signals often have meanings that are highly specific and context-dependent. Here we define some of these concepts as we use them in the paper.

alternative stable states Different configurations of a system that are able to exist at the same set of external conditions. Corresponds to a stable equilibrium or basin of attraction in nonlinear response to external conditions.

critical slowing down Reduced speed of recovery from perturbation as a critical transition is approached, due to a decline in engineering resilience.

critical transition Abrupt shift in a system caused by nonlinear responses to external conditions.

early warning signal / early warning indicator Model- or metric-based statistic able to warn that the system is approaching a sudden change, most often associated a critical transition.

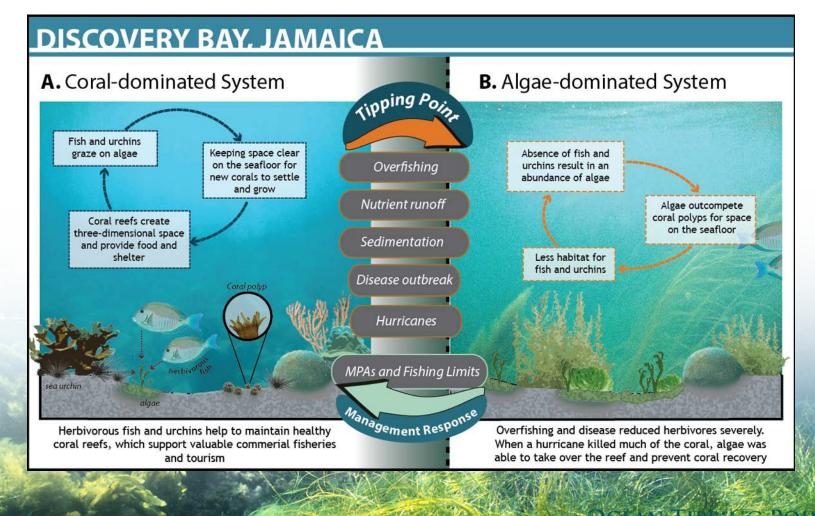
fold bifurcation / saddle node bifurcation A critical transition between alternative stable states, corresponding to the threshold in external conditions at which stable and unstable equilibria meet.

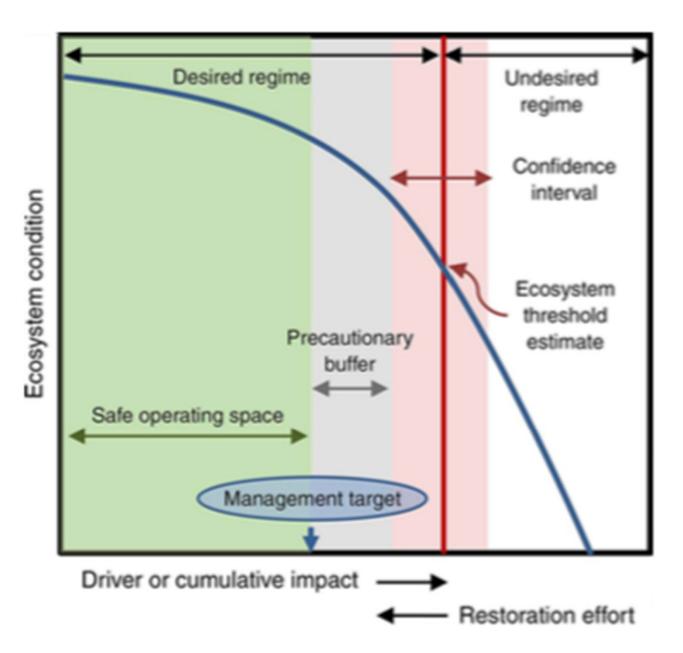
hysteresis Different critical transitions in response to increasing and decreasing external conditions; responses to external conditions that depend on system state and the direction of change in external conditions.

linear Systems with dynamics that can be expressed statistically by models in which the estimated parameters are combined by addition. Thus a linear regression (y = a)

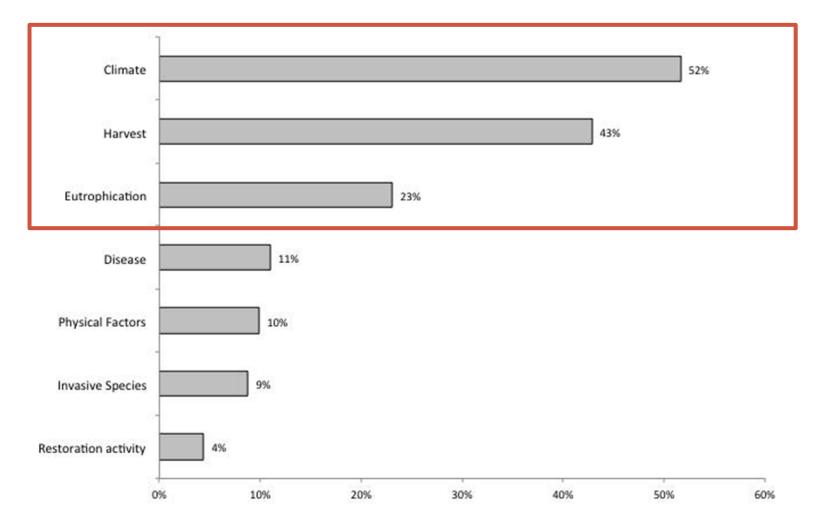
+ bx) or a quadratic regression ($y = a + b_1x + b_2x^2$) both describe linear systems. In a linear system, the effect of any small perturbation decays in time.

nonlinear In a nonlinear system a small perturbation may propel the system to another stable state, and dynamics are dependent on the initial conditions. Statistically, the response variable cannot be summarized as a linear combination of estimated parameters.

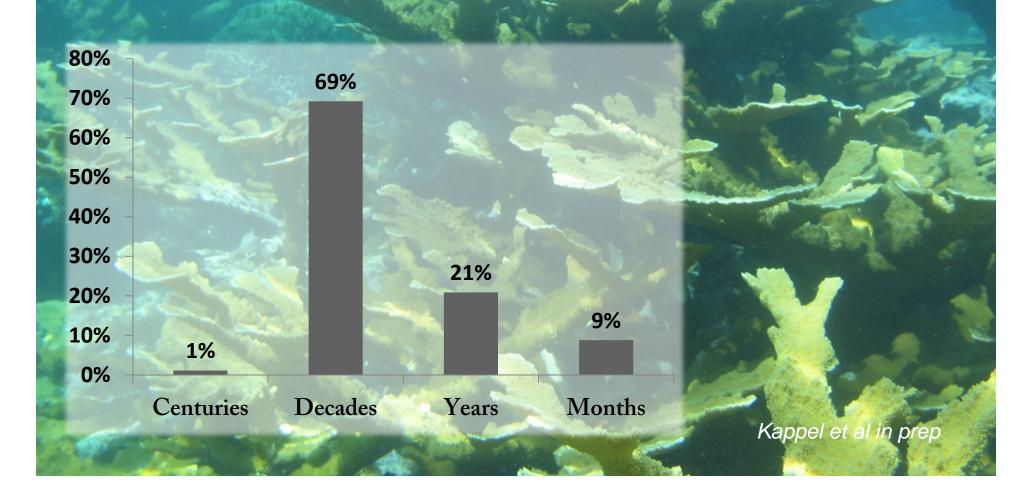

resilience Ecological resilience is the ability of a system to remain in its current state when exposed to perturbation. Engineering resilience is the speed with which a system returns to equilibrium after perturbation


Ecosystem Attribute	Indicator	Taxonomic group	Community	Definition and source of data	Time series	Sampling frequency
Species composition	Northern copepod anomaly, winter and summer	Invertebrates	Pelagic	Monthly anomalies in the relative biomass of copepods with cold- water affinities off Newport, OR (Peterson et al. 2015, NOAA);	1996 – 2014	Biweekly; summarized as winter and summer anomalies
Biodiversity	Species Richness, Species Density, Simpson's index	Groundfish	Benthic	Index of groundfish community composition (Keller et al. NWFSC)	2003 – 2014	Summers, Annual
Functional organization	Mean trophic index	Groundfish	Benthic	Trophic structure of groundfish community (<mark>Keller et al. NWFSC</mark>)	2003 – 2014	Summers, Annual
Functional organization	Scavenger biomass	Groundfish and invertebrates	Benthic	Relative biomass of scavengers, as defined by esp. Brand et al. (2007), from fishery independent surveys (Keller et al. NWFSC)	2003 – 2014	Summers, Annual
Functional organization	California sea lion pup production and growth	Marine mammals	Top predators	Average # of pups on San Miguel Island in late July and predicted daily growth rate of pups between June & October (Melin et al. 2012, Wells et al. 2013, NMML)	1997 – 2014	July and June - October, respectively; Annual

	Component	Driver/ Pressure	Indicator	Definition and source of data	Time series	Sampling frequency
	Oceanographic drivers	Basin-scale sea surface temperature	PDO summer and winter	1900 – 2014	Annual seasonal averages	
		Basin-scale atmospheric forcing	NOI summer and winter	Northern Oscillation Index (NOI) is the sea level pressure difference between the climatological mean position of the North Pacific High and Darwin, Australia (Schwing et al. 2002). Data accessed at www.pfel.noaa.gov/products/PFEL- /modeled/indices/NOIx/noix.html.	1948 – 2014	Annual seasonal averages
		Changes in source waters	NPGO summer and winter	The North Pacific Gyre Oscillation (NPGO) is a low frequency signal in sea surface heights over the NE Pacific. Data accessed at www.o3d.org/npgo/.	1950 – 2014	Annual seasonal averages
	Human Activities	Atmospheric pollution	Deposition of sulfate	Annual precipitation-weighted mean concentrations of sulfate measured at sites in CA, OR, and WA by the National Atmospheric Deposition Program.	1994 – 2014	Annual
		Commercial shipping activity	Volume of water disturbed	Calculated using draft, breadth and distance traveled within CCS of domestic and foreign vessels. Data from Army Corps of Engineers Navigation Data Center (ACENDC).	2001 - 2012	Annual
	-	Dredging	Dredge volumes	Dredge volumes for individual private contracts and Army Corps operated dredge projects in WA, CA, and OR. Data from ACENDC.	1997 – 2014	Annual
		Groundfish fisheries removals	Commercial landings	Metric tons of all species landed by commercial groundfish fisheries in CA, OR and WA. Data accessed via Pacific Fisheries Information Network (PacFIN).	1981 – 2014	Annual
		Habitat modification	Distance trawled	Kilometers trawled by the limited-trawl groundfish fishery in CA, OR and WA. Data from the Northwest Fisheries Science Center's Observer Science Program.	1999 – 2012	Annual
		Inorganic pollution	ISA-toxicity- weighted chemical releases	Releases of inorganic pollutants to the ground or water weighted by toxicity scores and impervious surface area (ISA) in the drainage watersheds of the CCE. Data from the Environmental Protection Agency's Toxics Release Inventory Program.	1988 – 2012	Annual
		Invasive species	Tons of cargo	Tons of cargo moved through ports in CA, OR and WA. Data from ACENDC.	1993 – 2013	Annual
		Nutrient input	Nitrogen and phosphorus input	Total farm and non-farm nitrogen and phosphorus input from fertilizer used in counties within CCE watersheds. Data from U.S. Geological Survey (USGS), Ruddy et al. (2006) & Gronberg and Spahr (2012).	1945 – 2010	Annual
		Organic pollution	Toxicity- weighted concentrations	Toxicity-weighted concentrations of 16 pesticides measured in water samples from stream-water sites in WA, OR and CA. Data accessed at http://pubs.usgs.gov/ds/655/.	1993 – 2010	Annual
		Total fisheries	Total	Metric tons of all species landed by commercial and	1981 -	Annual


Ecosystem state	Driver/Pressure	Analysis	Functional Form	Location of threshold	Best estimate of threshold location	Magnitude of response (%)	
Copepod anomaly winter	PDO winter	RGF		-0.5 to -0.2	NA		
Copepod anomaly winter	Habitat modification	truncated GAM GAM	\lesssim	143 to 234 138 to 252	208 227	70 30	
Copepod anomaly summer	NPGO winter	GAM		0.2 to 0.8	0.2	180	
Copepod anomaly summer	PDO summer	RGF		-1.2 to 0.5	NA		
Copepod anomaly summer	PDO winter	RGF		0.7 to 0.8	NA		
Scavenger ratio	Commercial shipping activity	RGF		14.7 to 15.2	NA		
Scavenger ratio	PDO summer	RGF		-0.6 to 0.1	NA		
Groundfish MTL	PDO summer	RGF		-0.3 to 0	NA		
CA sea lion pup production	NOI summer	GAM	$\overline{}$	-0.4 to 1.2	0.2	10	
CA sea lion pup production	PDO summer	truncated GAM GAM	5	-1.5 to -0.2 NTI	-0.8 NTI	10 NTI	
CA sea lion pup production	PDO winter	truncated GAM truncated GAM	\sim	0.7 to 1.5 -1.4 to 0.2	0.9 -0.8	30 0	

3. Changes in early warning indicators may precede tipping points



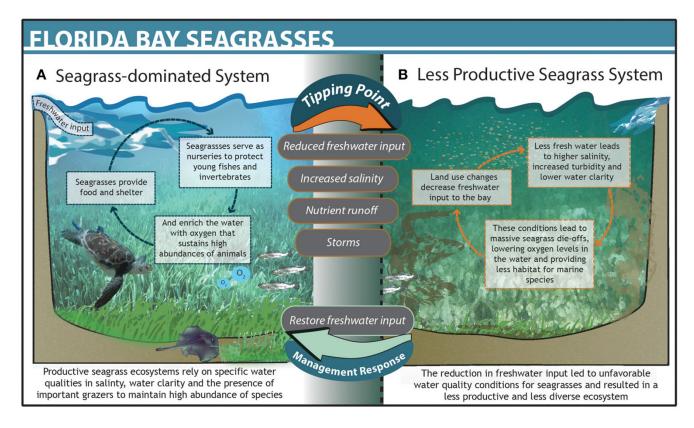
Drivers of Ecosystem Shifts

Kappel et al. In prep

Although recovery may be possible, ecosystems that have crossed a threshold tend to remain in an altered condition for decades

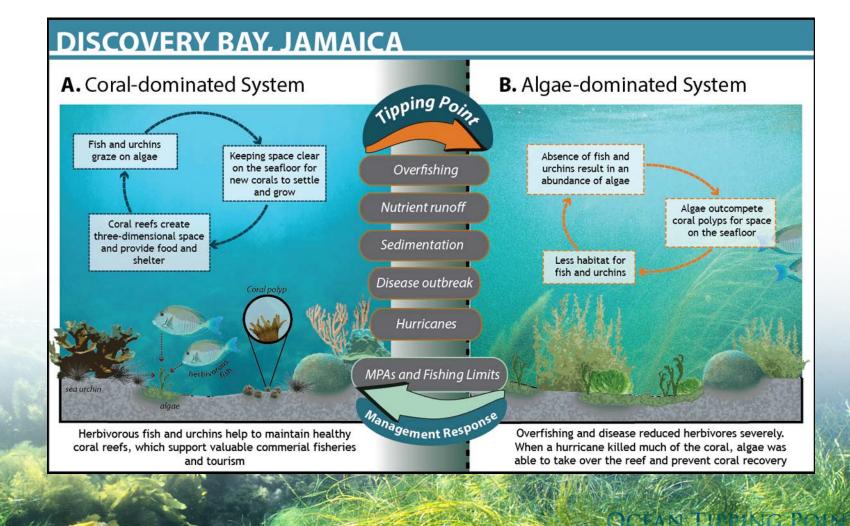
Why we are engaged

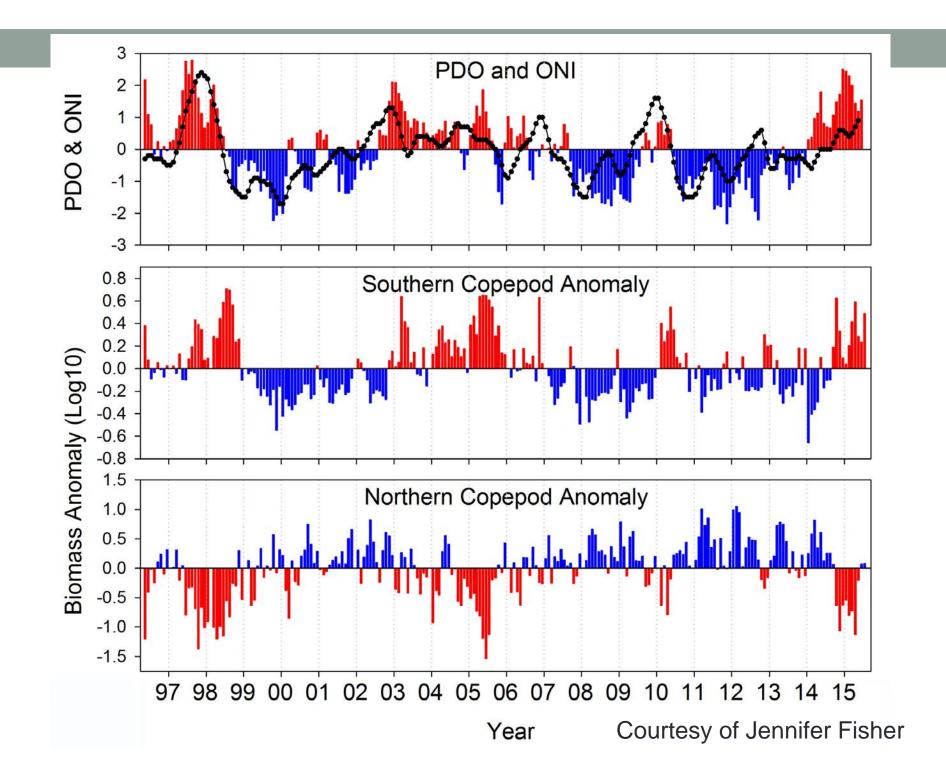
OCEAN TIPPING POINTS

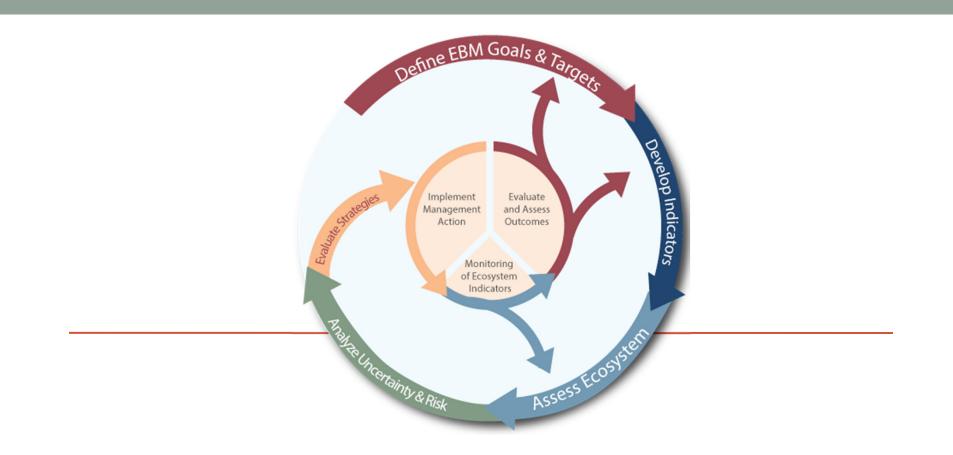

- Ecosystem tipping points may be rapid, unexpected and difficult to reverse.
- Crossing tipping points can have negative consequences for people's livelihoods and well-being.
- The ability to predict and understand ocean tipping points can enhance ecosystem management.
- Preventing a shift may be less costly than attempting to recover from one.

Non-linearity most common for response relationships involving species biomass and growth/condition

		Ecological responses											
		Species biomass C			Growth and condition			Area occupied			Recruitment		
Drivers	Metrics	% NL	% L	Ν	% NL	% L	Ν	% NL	% L	Ν	% NI	2 % L	Ν
	Large-scale climate patterns	67	33	18	-	-	-	55	45	11	86	14	7
Climate	Salinity	100	0	10	83	17	6	21	79	19	-	-	-
Clillate	Temperature	73	27	53	63	38	16	42	58	31	43	57	28
	Winds and upwelling	63	38	8	64	36	11	-	-	-	-	-	-
	Density dependence	71	29	7	60	40	15	50	50	8	-	-	-
Tropho-	Predator and prey biomass	63	38	40	64	36	11	-	-	-	38	63	8
dynamic	Recruitment	29	71	7	-	-	-	-	-	-	-	-	-
	Nutrients	-	-	-	50	50	8	-	-	-	-	-	-
Pollution	Water clarity	22	78	9	-	-	-	-	-	-	-	-	-
	Oxygen	100	0	41	-	-	-	0	100	30	-	-	-
Fishing	Fishing effort, landings and catch	50	50	42	-	-	-	-	-	-	-	-	-

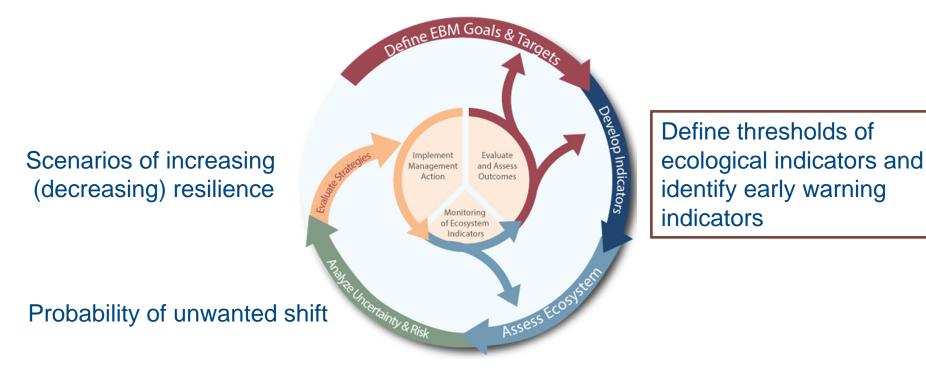

Threshold Management Works


More explicit use of thresholds in management is strongly associated with better environmental outcomes.



Kelly et al. 2014 Phil. Trans. Roy. Soc. B.

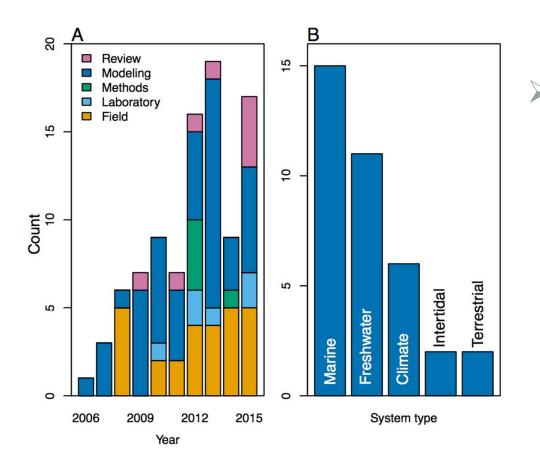
Changes in early warning indicators may precede tipping points



IEAs are intended to provide 'a synthesis and integration of information on relevant physical, chemical, ecological, and human processes in relation to specified management objectives (Levin et al., 2008, 2009)'.

Linkage to Ecosystem-Based Management

Define desired ecosystem state


Levin and Mollmann (2015)

Selkoe, Bleckner, Caldwell, Crowder, Erickson, Essington, Estes, Fujita, Halpern, **Hunsicker**, Kappel, Kelly, Kittinger, **Levin**, Lynham, Mach, Martone, Mease, Salomon, **Samhouri**, Scarborough, **Stier**, White, and Zedler. 2015. Principles for managing marine ecosystems prone to tipping points. Ecosystem Health and Sustainability 1(5):17.

Climate Tipping Points

- A common thread of the examples discussed was that fishery/ecosystem resource responses emerged from multiple stressors (e.g., increased temperature plus ocean acidification and human pressures) integrated by the resource of interest and the community in which they reside. This multi-stressor paradigm argues for:
- a) observational work to quantify multi-stressor responses, paired with
- b)predictive understanding of how systems respond to changes in individual stressors within a multi-stressor environment.
- c)quantitative models that to integrate this information to provide objective and reliable definitions of the resilience of clearly defined ecosystem services (e.g., catch, area of healthy reef), and develop predictive capacity.
- The resulting advances in scientific knowledge should be used to define "safe operating spaces" and adaptive management steps that ensure maintenance of the resource to the extent possible (see Figure below).

Outcome

Analyses demonstrating nonlinearity in ecosystem dynamics are more likely to support theoretical EWS predications than studies with linear or undetermined dynamics

Litzow and Hunsicker In Review