Diatom community composition shifts in response to eddies in the California coastal transition zone

Zuzanna M. Abdala¹, Sveinn Einarsson¹, Kimberly Powell¹, Jessica Fitzsimmons², Tyler Coale³, Claire Parker Till⁴, P. Dreux Chappell¹ (1) Ocean Earth and Atmospheric Sciences Department, Old Dominion University, Norfolk, VA, USA (2) Department of Oceanography, Texas A&M University, College Station, TX, USA (3) Scripps Institution of Oceanography, University of California, San Diego, CA, USA (4) Ocean Sciences Department, University of California, Santa Cruz, CA, USA

Use high-resolution in situ sensors to estimate lateral dissolved inorganic carbon flux over tides and seasons

Sophie Chu PhD Candidate **MIT-WHOI**

CHANnelized Optical Sensor (CHANOS)

Model a high-resolution total alkalinity lateral flux from a salt marsh using in situ sensors and bottle samples

The biogeochemistry and microbial ecology of sinking and suspended aggregates in a permanently anoxic lake

Ash B. Cohen School of Marine and Atmospheric Sciences Stony Brook University, New York Gordon T. Taylor Lab

Motivation

- Lacustrine macroaggregates (MAs) are 60% dry weight OC, therefore an important vehicle for OC sequestration if they sink
- Quality and quantity of OM that reaches the sediment-water interface is determined by the competing factors:
 - 1. Gravitational settling
 - 2. Advection
 - 3. Remineralization by heterotrophs

Motivation

 MAs potentially important in anoxic systems: 1.Enhancement of shear at redoxcline
2.Aggregation of "sticky" purple bacteria and chemolithoautotrophs at RTZ
3. Addition of dense carbonate material during whiting events

•MAs also "hot spots" of microbial activity- Which phenomenon is more prevalent? Microbial remineralization or relatively quick sequestration? How do these competing factors affect the biogeochemistry of an anoxic system?

GTT2	What these questions pertain to is a little unclear
	Gordon, //19/2016

GTT1 consider using "redoxcline" instead Gordon, 7/19/2016

Slide 7

How do MAs influence the system's microbial ecology?

Nature Reviews | Microbiology

Image Source: Azam and Malfatti, 2007

GTT3 How about "How do MAs influence the system's microbial ecology?" Gordon, 7/19/2016

Internal processes include:

- Pelagic food web structure
- Particle/aggregate size and type
- C demand of bacteria and zooplankton

D.K. Steinberg et al. / Deep-Sea Research II 55 (2008) 1615–1635

 Different patterns in community structure
between the two sites
Larger animals at K2

- Higher transfer efficiency at K2
 - Buesseler et al. 2007
 - Larger animals -> larger fecal pellets -> expedites transfer of POC
 - Higher degree of diel migration at K2

Assumption: Much of the variability in flux attenuation in the add Slage Une arises from varying zooplankton communities and behaviors.

Diatom community composition along Oregon Coast upwelling in relation to environmental variables

Sveinn Einarsson^{1,} Zuzanna M. Abdala¹, Kimberly Powell¹, Benjamin Twining², Claire P. Till³, Tyler Coale⁴, P. Dreux Chappell¹

¹Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VA, USA ²Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA ³University of Santa Cruz, Santa Cruz, California, USA ⁴Scripps Institution of Oceanography, San Diego, California, USA

An advective mechanism for Deep Chlorophyll Maxima (DCMs) in southern Drake Passage Zachary K Erickson and co-authors

What causes DCMs? (Hint: advection!)

Black contours are isopycnals (1027.2 and 1027.35 kg/m³); grey line is mixed layer depth; black dashed line is euphotic depth (1% surface PAR)

1-D

- Photoacclimation
- Sub-surface production
- Thin phytoplankton layers

2-D

Along-isopycnal subduction aligned with a seasonal potential vorticity gradient

3-D

•

•

- Cross-frontal subduction by mean flow (large downstream advection)
- Cross-frontal subduction by eddies

Characterizing the mechanisms underlying Southern Ocean diatom community composition shifts

Laura Z. Filliger, Tom O. Delmont, Anne-Carlijn Alderkamp, Anton Post, Bethany D. Jenkins

University of Rhode Island, NSF Graduate Research Fellow

- Can we delineate the Fe stress response in Southern Ocean diatoms?
- Determined if Fe and/or other environmental variables drive diatom community composition in three different regions of the SO

Samples are split into four main clusters

Thalassiothrix sp. Thalassiosira oestrupii Fragilariopsis sp. F. kerguelensis F. cylindrus Hemiaulus sp.

Dissolved Fe and salinity drive biological patterns observed

Diapycnal mixing inhibits ocean carbon storage

Andrew Gunn^{1,2,3}, Maxim Nikurashin^{2,3}

¹Now at Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia USA. Email: andle@sas.upenn.edu.

²Institute for Marine and Antarctic Studies, University of Tasmania, Hobart Australia.

³ARC Centre of Excellence for Climate Systems Science, Australia.

Diapycnal mixing inhibits ocean carbon storage

Andrew Gunn, Maxim Nikurashin

- Present an idealized analytical theory showing how ocean carbon depends on diapyncal mixing via the MOC, air-sea CO₂ exchange and biological productivity
- Compare the results to a global 2.8° MITgcm with a simple biogeochemical package
- Both agree that diapycnal mixing reduces the ocean carbon store

Using noble gases in a salt marsh pond to compare common gas exchange parameterizations and constrain efflux of oxygen by ebullition

Evan Howard, Rachel Stanley, and Inke Forbrich

Using noble gases in a salt marsh pond to compare common gas exchange parameterizations and constrain efflux of oxygen by ebullition

Evan Howard, Rachel Stanley, and Inke Forbrich

Photosynthetic oxygen

blogs.nasa.gov/icescape/

CDM in an IPCC-class climate model, Grace Kim, JHU

CDM in an IPCC-class climate model, Grace Kim, JHU

OCB 2016. Hyewon Kim, Lamont-Doherty Earth Observatory, Columbia University

Palmer Station Antarctica LTER

HOME ABOUT RI

ABOUT RESEARCH

DATA

EDUCATION & OUTREACH PUB

PUBLICATIONS

Welcome to Palmer Station Antarctica LTER A member of the Long Term Ecological Research Network

Palmer LTER (1991-)

Working hypothesis "Sea ice as a mediatory physical forcing factor for polar ecology &

biogeochemical cycling in the era of climate change"

LTER cruise sampling *R.V.* LMG Every January

Station deployment Palmer Station Biweekly sampling (October-March)

Research Questions "How ecosystem and biogeochemical functions interact with climate and upper ocean dynamics"

OCB 2016. Hyewon Kim, Lamont-Doherty Earth Observatory, Columbia University

forcing

Andrew Margolin, final-year PhD student Hansell Lab, RSMAS, University of Miami

Net removal of dissolved organic carbon in the anoxic waters of the Black Sea

Andrew R. Margolin^{a,*}, Loes J.A. Gerringa^b, Dennis A. Hansell^a, Micha J.A. Rijkenberg^b

^a Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA

^b NIOZ Royal Netherlands Institute for Sea Research, Department of Ocean Systems (OCS), Utrecht University, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands

Environmental Impacts on Carbon Biogeochemistry in Marginal Seas

 DOC in Black Sea (Margolin et al., 2016, Mar. Chem.)
Chromophoric dissolved organic matter (CDOM) in Black Sea
DOC, CO₂ in deep Gulf of Mexico & Caribbean
DOC, CO₂ in Arctic Ocean

Water-column transformation of particle organic carbon composition in the Southern Ocean Great Calcite Belt

Advisors: Phoebe Lam, Valier Galy, Ann McNichol

Images: Balch et al. 2016 (accepted); Rosengard et al. 2015

Image: Kyrstin Fornace

(1) Thermal stability(2) Fraction-specific isotope composition

Arctic budget of C_{ant} (2003 to 2012)

C_{ant} transport in the Arctic

C_{ant} inventory

Cumulative Flux

Transport = Inventory - Flux

- Cumulative air-sea flux of 1.1 PgC until 2007 (including Greenland & Norwegian Seas)
- Arctic inventory: 2.7 PgC in 2007
- Some outgassing over Siberian shelf

Jens Terhaar PhD student at IPSL-LSCE, Paris ITN-Marie Curie Fellow

