Ventilation and oxygen variability and change

Laure Resplandy Princeton University

Indian Ocean Science Workshop, Sept 2017

Ocean oxygenation and societal impacts

Ocean oxygenation and societal impacts

Ocean oxygenation and societal impacts

Indian Ocean hosts major oxygen minimum zone

anthropogenically-forced trend should already be evident in parts of Indian Ocean Long et al., GBC 2016

What observations tell us

No significant trend observed in Indian Ocean

Why are ventilation and O₂ trends so difficult to detect?

What can we learn on processes looking at variability from global multi-millennia scale to sub-seasonal mesoscale?

Apparent oxygen utilization controls O₂ distribution in Indian Ocean

Indian OMZ strengthened during last deglaciation warming

Jaccart and Galbraith, Nature Geo 2011

Indian OMZ strengthened during last deglaciation warming

Jaccart and Galbraith, Nature Geo 2011

Indian OMZ strengthened during last deglaciation warming

Jaccart and Galbraith, Nature Geo 2011

Ventilation control and thermal re-enforcement in OMZ

Bopp, Resplandy et al., Royal Society 2017

RCP8.5 (Business as usual) 1990 to 2090 200 to 600 m

Bopp, Resplandy et al., Biogeosciences 2013 Bopp, Resplandy et al., Royal Society 2017

Can earth system models help to understand observed anthropogenic trend? (or the lack of it)

O₂ decrease O₂ increase

Ventilation controls O₂ but partial compensation with thermal changes limits robustness ... and detection

Bopp, Resplandy et al., Biogeosciences 2013 Bopp, Resplandy et al., Royal Society 2017

10-100 yrs

Strong modulation of ventilation on decadal time-scales obscures anthropogenic trends

1-10 yrs

Strong modulation of O₂ on interannual timescales obscures anthropogenic trends

1-10 yrs

Strong modulation of O₂ on interannual timescales obscures anthropogenic trends

Indian Ocean Dipole preconditions coastal anoxia Consistent with observed anoxic events (neg. or no IOD) 1998, 1999, 2001, 2002, 2004, 2005 (Naqvi et al. 2009)

Eddies decouple biology from ventilation

< 1 yr

Resplandy et al., JGR 2011

Eddies decouple biology from ventilation

Resplandy et al., Biogeosciences 2012

Eddies crucial to offshore biological production

3 coastal upwelling

horizontal & vertical transport of nutrients

Resplandy et al., JGR 2011

What are the processes controlling OMZ permanence?

Resplandy et al., Biogeosciences 2012

Eddies supply O₂ offshore western boundary

Eddies decouple O₂ circulation supply from biological consumption

Resplandy et al., JGR 2011 Resplandy et al., Biogeosciences 2012

Conclusions

Ventilation controls O₂ changes and variability across time-scales

No significant trend in observations and some disagreement across models:

- robust but opposed trends from thermal & ventilation changes => weak & uncertain trends
- obscured by variability
- key processes still undersampled or missing in global models