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| am NOT an expert on the deep
biosphere of the Indian Ocean.



There are very few marine sediment microbiological studies
from the Indian Ocean.
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Microbes in the oceanic subsurface are energy-limited

Other electron acceptors?

Fermentation of organic matter
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Reasons to study the deep sediment
biosphere

* |tis one of Earth’s largest biomes, but little is
known about it.

* |tis Earth’s largest reservoir of organic carbon.

 The microbes that inhabit it are very different
from known microbes and may have exciting
novel properties.
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Fig. 1. Sampling location at Afanasy Nikitin seamount.

Khandeparker et al. 2014, Geomicrobiology Journal
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Single cell genomics
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* Gene homologues of these cysteine peptidases are
all extracellular, and degrade proteins/peptides for
cellular nutrition in bacteria.

* They require high Ca%* concentrations and anoxic
conditions to be functional — perfect for the deep
subsurface!

Lloyd et al. 2013, Nature



proteins @

extracellular peptidases

v C1A,C11, C15, C25,S8A, M14A
oligopeptides s

extracellular peptidases

v C1A,C11,C15, C25, S8A, M14A

oligo/dipeptides =
and amino acids

oligo/dipeptide transporters

Lloyd et al. 2013, Nature



proteins @

extracellular peptidases
v C1A,C11, C15, C25,S8A, M14A

oligopeptides

extracellular peptidases

v C1A,C11,C15, C25, S8A, M14A
oligo/dipeptides = . . .
andaminoacids =  oligo/dipeptide transporters

~+v Intracellular peptidases S15,
$16, M14A, M20, M22, M24,
M28, M29, T1A, M50

Amino acids

Lloyd et al. 2013, Nature



proteins @

extracellular peptidases
v C1A,C11, C15, C25,S8A, M14A

oligopeptides

extracellular peptidases

v C1A,C11,C15, C25, S8A, M14A
oligo/dipeptides = . . .
andaminoacids =  oligo/dipeptide transporters

~+v Intracellular peptidases S15,
l S$S16, M14A, M20, M22, M24,

M28, M29, T1A, M50
, . Glutamate
Amino acids dehydrogenase
Amino- 2-oxoglutarate NADP+
transferasesK Glutamate bq NADPH
2-keto acids POR/VOR
POR/VOR |~ Fd(ox) KOR IOR
KOR IOR KF
dired) aldehydes
<4— Acyl-CoAs
cycle scs L~Aop AOR| - Fd(ox)
ACS KATP Fd(red)
Organic acids

Lloyd et al. 2013, Nature



* These cysteine peptidases have intact functional

groups, extracellular transport signals, and
cofactor binding sites.

* They also occur in clusters on the genome.

propeptide propeptide
Cc25 C25

Key

Red: active site
IExport Blue: Arginine specific residue

signal P.urple. putative Ca2+ binding
site
Grey arrow: hypothetical protein

Lloyd et al. 2013, Nature



activity, nmol AMC g"1 sed hr’

The substrates of these cysteine peptidases are
readily hydrolyzed in Aarhus Bay sediments.
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Hydrothermal vents:
Hot spots of life
in the deep sea




Why study hydrothermal vents?

They are an important input of heavy metals to the
oceans. ~“9% of iron and 14% of copper in the deep
ocean came from vents (Sander & Koschinsky 2011).

They are the formation zones of new seafloor.

People are looking into mining them for precious
metals.

They harbor some of the most interesting life on
Earth that appears to function without inputs from
sunlight.



Hydrothermal Vents are an
extreme environment

e High temperatures (up to 1000°C) and low
pH (down to pH 2)

e High concentrations of potentially toxic
constituents: Heavy metals and sulfide

e High pressure (up to 500 atm)

e Rapidly fluctuating conditions, with
potential loss of carbon and energy sources



Why study extremophiles?

Novel properties — unique enzymes
Use In bioremediation
Models for early Earth, space environments

Extreme environments include extremes of
temperature, pH, acid, salt, pressure

Expansion of our definition of “habitable”
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Anomolously high H, and SiO, and low CH,
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Anomolously high H, and SiO, and low CH,
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Scaly-food gastropod

Chen et al. 2015, J. Molluscan Studies
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Mid-Atlantic Ridge
hydrothermal vent chimneys,
covered with shrimp

| Recently also discovered at-
e & Indian Ocean vents (Kairei)



Aen BiesD

Alvinella pompeijana,

a vent polychaete

living in chitinaceous
tubes in vent chimney
walls.

The head (with tentacles)
reaches out and feeds;
the hind end is exposed
to hot temperatures

in the chimney wall

(up to 80°C ?).

Note the conspicuous
bristles on the back.



April 1991:
Vigorous hydrothermal circulation:
No animals present,

abundant microbial flocs

March 1992:
Fissure is colonized by the tube worm
Tevnia jerichonana

December 1993:
Tube worm Riftia pachyptila has formed

a dense colony




October 1994:
Further growth of the
Riftia pachyptila colony

November 1995:

Riftia colony alive, but stained with Fe oxides;
the result of a change in vent chemistry

(less sulfide, more Iron)

November 1997:
Noticeable decline of Riftia colony
due to sulfide limitation

fiks et al. 1998. Deep Sea Research Il 45, pp. 465-515




