Trace metal uptake and remineralization and their impact on upper ocean stoichiometry

Ben Twining, Dan Ohnemus, Renee Torrie

Bigelow Laboratory for Ocean Sciences

Why worry about trace metal remineralization from sinking (biogenic) particulate matter?

⁽Kwon et al. 2009)

Outline

- Coupled element cycles and stoichiometry
- Trace element micronutrients and macronutrients: coupled or uncoupled?
- Pre-GEOTRACES and FeCycle II data
- Particle remineralization in GEOTRACES NAZT and EPZT datasets

Macronutrient stoichiometries

- •Redfield ratio
- •Correspondence of dissolved and particulate N:P ratios

 \rightarrow similar chemical lability (?)

The extended Redfield ratio

- Morel & Hudson 1985
- Bruland et al. 1991
- Numerous Sunda studies

 $(C_{124}N_{16}P_{1}S_{1.3})_{1000}Fe_{7.5}Zn_{0.8}Cu_{0.38}Co_{0.19}Cd_{0.21}Mo_{0.03}$ (Ho et al. 2003)

The extended Redfield ratio

Table 3P-normalized metal stoichiometries for the North Atlantic, North Pacific, and Southern Oceans, as calculatedfrom regressions of dissolved concentrations in the upper water column (typically <800 m)</td>

Site	Fe ^b	Zn ^c	Ni ^d	Cu ^e	Cof	Cd ^g	References
North Atlantic Ocean	1.1 ± 0.4	2.6 ± 1.0	1.6 ± 0.1	0.30	0.061	0.24 ± 0.12	Bruland & Franks 1983, Yeats & Campbell 1983, Martin et al. 1993, Sunda 1997, Lane et al. 2009
North Pacific Ocean	0.5 ± 0.3	3.9 ± 1.2	1.0 ± 0.1	0.41 ± 0.08	0.038 ± 0.002	0.40 ± 0.11	Sclater et al. 1976, Bruland 1980, Martin et al. 1989, Sunda 1997, Lane et al. 2009
Southern Ocean	0.2 ± 0.04	6.0 ± 2.6	1.8 ± 0.1	0.53 ± 0.13	0.041 ± 0.005	0.65 ± 0.30	Sunda 1997, Löscher 1999, Ellwood 2008, Lane et al. 2009, Saito
Ca.	0.6	4	1.5	0.4	0.045	0.43	2011, Croot et al. 2011

(Twining & Baines 2013)

 $(C_{124}N_{16}P_{1}S_{1.3})_{1000}Fe_{7.5}Zn_{0.8}Cu_{0.38}Co_{0.19}Cd_{0.21}Mo_{0.03}$

(Ho et al. 2003)

Contribution of lithogenic and scavenged fractions

(Twining et al. 2016)

Correspondence of bulk plankton and dissolved remineralization ratios in pre-GEOTRACES field data

(Twining & Baines 2013)

Is there clear evidence for decoupling of TMs during remineralization?

Early estimates of TEI-nutrient decoupling

CARRIER MODEL

METAL/P (BULK) X β X NET P FLUX = METAL FLUX

(Collier & Edmond 1984)

Early estimates of TEI-nutrient decoupling

 β = <u>residual metal fraction</u> residual P fraction

Element	β
Cd	0.5 – 0.9
Ni	2.4
Cu	3.4
Mn	2
Zn	?
Fe	6

 β estimated from shipboard leaching / element loss experiments

(Collier & Edmond 1984)

Decoupled TEI remineralization during a GEOTRACES process cruise

Remineralization stoichiometries during FeCycle II spring bloom

(Twining et al. 2014)

Remineralization stoichiometries along North Atlantic Zonal Transect

(Boyd & Ellwood 2010)

Comparison of remineralization stoichiometries for additional NAZT trace metals

Particulate data taken from pumps (Ohnemus and Lam) and corrected for lithogenic fraction

Investigating decoupled remineralization through power curve fits

Martin et al. (1987):
$$P(z) = P_0 \left(\frac{z}{z_0}\right)^{-b}$$

(Lam et al. 2011)

Over what depth ranges can power curves be used to model remineralization?

Comparison of b values between ocean basins

<u>Caveats</u>: pumps vs. bottles; comparison restricted to offshore stations

Eastern Pacific Zone Transect cruise

Outstanding questions

- Can scavenging and the contribution of non-biogenic particle fractions be better constrained?
- Is trace metal remineralization from sinking biogenic matter truly decoupled? If so, what controls this decoupling?
- Do resulting vertical fluxes for nutrients match independent estimates?
- What spatial and temporal variability is there in these processes?

Acknowledgements

- <u>Bottle particles</u>: Sara Rauschenberg , Pete Morton, Rob Sherrell
- <u>Pump particles</u>: Phoebe Lam
- <u>Dissolved data</u>: many groups on NAZT and EPZT
- <u>Funding</u>: NSF Chemical Oceanography